
 i

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

GENETIC ALGORITHM BASED OPTIMIZATION OF
ADVANCED SOLAR CELL DESIGNS MODELED IN

SILVACO ATLASTM

by

James Utsler

September 2006

 Thesis Co-Advisors: Sherif Michael
 Thesis Co-Advisor Bret Michael
 Second Reader: Todd Weatherford

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Genetic Algorithm Based Optimization of
Advanced Solar Cell Designs Modeled in SIlvaco ATLASTM
6. AUTHOR(S) James D. Utsler

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A genetic algorithm was used to optimize the power output of multi-junction solar cells. Solar cell
operation was modeled using the Silvaco ATLASTM software. The output of the ATLASTM simulation runs
served as the input to the genetic algorithm. The genetic algorithm was run as a diffusing computation on
a network of eighteen dual processor nodes. Results showed that the genetic algorithm produced better
power output optimizations when compared with the results obtained using the hill climbing/gradient
approach.

15. NUMBER OF
PAGES

109

14. SUBJECT TERMS
Multi-junction Solar Cells, Distributed Computing, Genetic Algorithm, Optimization, Silvaco
ATLASTM

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

GENETIC ALGORITHM BASED OPTIMIZATION OF ADVANCED SOLAR
CELL DESIGNS MODELED IN SILVACO ATLASTM

James D. Utsler

Captain, United State Marine Corps
B.A. and B.S., University of Washington, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: James Utsler

Approved by: Sherif Michael
Co-Advisor

Bret Michael
Co-Advisor

Todd Weatherford
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer
Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A genetic algorithm was used to optimize the power output of multi-

junction solar cells. Solar cell operation was modeled using the Silvaco ATLASTM

software. The output of the ATLASTM simulation runs served as the input to the

genetic algorithm. The genetic algorithm was run as a diffusing computation on a

network of eighteen dual processor nodes. Results showed that the genetic

algorithm produced better power output optimizations when compared with the

results obtained using the hill climbing/gradient approach.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

II. BACKGROUND.. 3
A. SOLAR CELL BASICS (SEMICONDUCTOR BASICS) 3

1. Definition of a Material’s Bandgap ... 3
2. The P-N Junction ... 8
3. Solar Cell Operation .. 10
4. Solar Cell Performance ... 11

a. Techniques of Characterization................................. 11
b. Hindrances to Performance 13

B. MULTI-JUNCTION SOLAR CELL FUNDAMENTALS 14
1. Principle of Operation ... 14
2. Challenges with Multi-Junction Cells 16

a. Parasitic Junction and Tunnel Junctions 16
b. Materials Incompatibility .. 17
c. Shadowing Effect .. 18
d. Electrical Limitations.. 18

C. GENETIC ALGORITHMS .. 20
1. Concept and Typical Applications 20
2. Illustrative Example: Modeling the Single Junction Solar

Cell .. 21
a. The Problem to be Solved .. 21
b. Numerically Representing the Problem 22
c. Executing the Algorithm... 23
d. Breeding a New Generation 25

3. Nuances of Genetic Algorithms ... 28
a. Population Size ... 28
b. Selection Strategy... 28
c. Crossover Settings ... 29
d. Probability of Mutation ... 30

D. MODELLING CELLS IN ATLASTM SILVACO 31
1. Origins of the Cell Model... 31
2. Previous NPS Research Progress.. 32

a. Michalopoulos... 32
b. Green.. 32
c. Bates .. 33
d. Crespin... 33

III. PREVIOUS OPTIMIZATION APPROACHES AND THE CASE FOR
DISTRIBUTED COMPUTING ... 35
A. DREW BATES’ GENETIC ALGORITHM AND ITERATIVE

CURRENT MATCHING APPROACH .. 35
B. THE CASE FOR DISTRIBUTED COMPUTING................................. 37

 viii

1. Size of the Solution Space.. 37
2. Distributed Computing Approach .. 38
3. Choosing a Distributed Computing Platform...................... 39

IV. RESULT VALIDATION... 43
A. DISTRIBUTED COMPUTING IMPLEMENTATION 43

1. Hardware Setup ... 43
2. Software Setup... 43

a. Operating Systems ... 43
b. Distributed Computing Scheme 44

B. SINGLE-JUNCTION RESULT VALIDATION 45
1. Coarse Sampling and Gradient Ascent Method and

Results.. 45
2. Distributed GA Method and Results 48

C. MULTI-JUNCTION CELL APPROACHES .. 50
1. GA Real-Values Method and Results 50
2. Possible Explanations for the Results................................. 51

V. CONCLUSIONS.. 55

APPENDIX A DETAILED REVIEW OF AN INPUT DECK............................. 57

APPENDIX B: CHALLENGES IN ADAPTING WINDOWS ATLASTM INPUT
DECKS TO ATLASTM UNDER UNIX .. 65

APPENDIX C: DISTRIBUTED COMPUTING PROGRAMMER’S NOTES...... 69

APPENDIX D: MATLABTM GENETIC ALGORITHM AND DIRECT
SEARCH TOOLBOX NOTES... 75

LIST OF REFERENCES.. 87

INITIAL DISTRIBUTION LIST ... 89

 ix

LIST OF FIGURES

Figure 1. Order of electron shell filling [From Ref. 3] ... 3
Figure 2. Silicon Electron Shell Diagram [From Ref. 4] 4
Figure 3. Silicon covalent bonds in a homogeneous mixture [After Ref. 5].......... 5
Figure 4. Energy band diagram for three types of materials [After Ref. 5]........... 6
Figure 5. N-Type doping using Arsenic (As) in Silicon [After Ref. 5].................... 7
Figure 6. P-type doping using Gallium (Ga) in Silicon [After Ref. 5] 8
Figure 7. Formation of the depletion region at (a) time zero and (b)

equilibrium [After Ref. 5] ... 9
Figure 8. Electron-hole pair generation through a collision with a photon

[After Ref. 5] ... 10
Figure 9. Solar cell in operation [After Ref. 5] .. 11
Figure 10. IV curve for a typical solar cell [After Ref. 6]....................................... 12
Figure 11. Irradiance plotted by wavelength (lower left) and contained energy

(upper right) [After Ref. 6]... 15
Figure 12. Simple stacking with parasitic junction(a) and tunnel junction (b)

[From Ref. 6] .. 17
Figure 13. Typical Current-Voltage curves for solar cells based on various

materials [From Ref. 6] ... 19
Figure 14. Example of Single Junction InGaP cell [After Ref. 7].......................... 22
Figure 15. Encoding of traits into a 32-bit chromosome [From Ref. 7]................. 22
Figure 16. Simplified flowchart for genetic algorithm ... 24
Figure 17. Breeding Process Flowchart... 25
Figure 18. Roulette wheel list generation (a) and selection mechanism (b)

[From Ref. 7] .. 26
Figure 19. Dual-Point Crossover [From Ref. 7].. 27
Figure 20. Mutation of Bit Values in a Chromosome [From Ref. 7]...................... 27
Figure 21. Example of uniform crossover [From Ref. 8] 29
Figure 22. Results of Bates’ iterative current matching routine for four-junction

cell [From Ref. 7] .. 37
Figure 23. Original Lab Setup.. 43
Figure 24. Revised distributed computing platform.. 49
Figure 25. Highlighted Measurement Points for Individual Junction Layers 53
Figure 26. Comparison of IV characteristics obtained under Windows and

Linux... 67

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Quantization scheme for chromosome encoding [From Ref. 7].......... 23
Table 2. Comparison of Distributed Computing Approaches............................ 40
Table 3. Computation Time required for varying granularity of coarse

searches of the solution space ... 47
Table 4. Coarse Sampling and Gradient Ascent Data for InGaP Cells............. 47
Table 5. Extended Genetic Algorithm Results through 50 Generations with

Increased Mutation Rate .. 50
Table 6. Sample Extraction code under Windows (Left) and Linux (Right) 66
Table 7. Scientific Constants used by ATLASTM under Windows (Left) and

Linux (Right) ... 67

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

First, I would like to thank my thesis advisors, Professors Bret Michael and

Sherif Michael. Their patient and tireless support throughout the research and

writing process has kept me focused and on track to producing a useful body of

work and to gain exposure through the writing and presentation of conference

papers.

Second, I would like to thank Donna Burych for the countless hours spent

assisting me with configuring the distributed computing system for ease of use

and for timely troubleshooting and support throughout the process.

Next, I would like to thank Robin Jones at Silvaco. He provided timely

responses to many of the day to day problems encountered using the solar cell

models under Silvaco ATLASTM. Without him, I likely could not have deciphered

some of Silvaco’s error messages.

Last but not least, I would like to thank my wife, Tanya, and our children

Isabelle, Timothy, and Casey, for their patience and understanding with the many

hours of effort required to complete this research. After the first eight years of

our marriage involved in a distance MBA and this resident MSEE program, we

will finally have evenings without academic studies. I thank Tanya especially for

bearing a disproportionate share of the work to maintain our home and raise our

children during this time. My success is as much a product of her effort as mine.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The current state of the solar cell industry is that development occurs by

the fabricate-and-test method. Engineers design cells, have them fabricated, test

them in the lab, and then repeat the process. The industry has not found any

suitable software platforms which may be used to accurately predict or simulate

cell performance. Over the past four years, researchers at NPS have found a

way to model solar cells within Silvaco’s ATLASTM software. ATLASTM is a

physically based simulator which models the flow of charge carriers through a

device based on the physical structure defined by the user.

Solar cell models for single, dual, triple, and quad-junction solar cells have

been modeled. The single, dual, and triple-junction cell models have been

validated against experimental results for accuracy. The quad-junction cell is a

design proposal and has not yet been fabricated. ATLASTM cell models have

been used for validation against experimental results and to optimize designs for

future cells. In addition, radiation effects on a single-junction cell have been

successfully modeled and validated against experimental data.

The optimization of cell designs was initially a trial and error process. One

researcher, Drew Bates, used a genetic algorithm to optimize the individual

layers of a multi-junction cell and developed an iterative current-matching routine

for the optimization of the combined multi-junction cell. Bates admitted that his

optimization was limited by the amount of computation time available during his

time as a student. This thesis explores the validity of Bates’ approach by using a

coarse sampling and gradient ascent algorithm as well as a variant of the genetic

algorithm to more completely explore the solution space. To accommodate a

larger sample of the solution space, a distributed computing platform was

developed and implemented.

Bates genetic algorithm implementation focused on seven cell traits

modeled with 16 possible values for each trait. For each cell type tested, a

 xvi

coarse sampling of the solution space was conducted by taking all permutations

of three values of each trait: the low, middle, and high values. This produced

2187 unique chromosomes spread evenly throughout the solution space.

Following simulation, the five best candidates were subjected to a gradient

ascent search. The gradient process simulated a list of chromosomes derived by

taking every permutation of trait values equal to, one higher, and one less than

the candidate’s trait values. Once simulations were complete, the next gradient

search was centered on whatever point had the maximum power output. This

gradient ascent method continued until a local maximum was reached. After

exercising the algorithm on each cell type, no improvements from Bates’ results

were obtained. This confirms the nonlinearity of the solution space for this

problem. If each of the seven traits had a linear effect on output power, the

gradient search method would always lead to the global maximum. In most

searches, each candidate followed its gradient to a different local maximum.

The second approach was to apply a genetic algorithm using the

MATLABTM Genetic Algorithm and Direct Search Toolbox as a front-end

combined with the distributed computing system as the back end. Genetic

algorithm properties used by Bates were preserved with two exceptions. The

first is that the simulations were continued out to 50 generations vice 20. The

second exception was that the mutation rate was increased because the

populations were observed to converge by the 20 generation mark. In almost

every cell configuration tested, an improvement in cell output power was

obtained.

Bates utilized an iterative current-matching routine to optimize multi-

junction cells. Quad-junction cells are essentially four separate solar cells

stacked on top of one another and wired in series. While the overall voltage is

the sum of the four layers, the current is limited by the layer producing the least

current. The current-matching routine works by adjusting cell thicknesses to

match the currents. For example, the top layer normally produces the highest

voltage and lowest current. If the top layer is made thicker, its voltage remains

 xvii

unchanged while its current production increases. In addition, more light is

absorbed and less is transmitted through to the other layers. This reduces

current production in the other layers but brings the total cell to a higher output

power by increasing the top layer’s limiting current level. As this process was

used, many cases occurred where layer thicknesses were needed which had not

been specifically optimized for using the genetic algorithm. In these cases,

approximations were made using thickness and power values of the nearest

known cell configurations.

In the final experiment of this thesis, a real-valued genetic algorithm was

applied to the total quad-junction cell. The results of this algorithm were

inconclusive. In each generation of results, the power values for an entire

population would have an identical power value even though the cell

configurations were different. When known optimized cell parameters were

inserted into the population, those power values would match previous results

while the remainder of the population would have a common power value

different than the optimized cell. The root cause of this needs to be investigated

further.

In initial investigation, two sources of error were found. The first is in the

way multi-junction cells are modeled in ATLASTM. At this time, there is not a

working model of the tunnel junction between the layers of the cell. To model the

cell, the space occupied by the tunnel junction is modeled by a vacuum with

optical properties that don’t cause any refraction between the two cell layers.

Separate contacts for each layer are modeled and the IV curve is extracted for

each of the individual layers. This ties into the second source of error: the IV

curve solve points found by ATLASTM are focused around each junction layer’s

maximum power point since this has been the focus of research. However, when

three other junction layers are limited to the fourth layer’s current, in most cases

there are no IV curve solve points for the other three layers at that current level

since it’s not near the layers’ maximum power current. When this occurs, the

MATLABTM algorithm which computes output power conducts a linear

 xviii

approximation based on the two nearest points. While this sometimes falls on a

very linear portion of the IV curve, it sometimes does not.

The development of a tunnel junction for the multi-junction cell model is

the most promising remedy to this problem. It would allow the direct

measurement of the cell’s total output power without the need to measure each

junction layer independently and perform calculations.

Through this research, Drew Bates’ optimization approach for single-

junction cells using the genetic algorithm was validated. A coarse sampling and

gradient ascent algorithm did not find improved solar cell output power values.

Improved results were found in this research only by continuing his algorithm for

more generations and with a higher mutation rate. The optimization of the quad-

junction in this thesis was inconclusive, The cell itself and optimization

approaches can be significantly improved by the development of the tunnel

junction within the ATLASTM multi-junction cell model.

 1

I. INTRODUCTION

In 1839, Antoine-Cesar Becquerel discovered that some combinations of

materials produced electricity when exposed to light [Ref: 1]. The first cell with

similar construction to modern cells was fabricated by Charles Fritts in 1877 by

coating selenium with a nearly transparent thin layer of gold [Ref: 1]. However,

his cells were less than 1 percent efficient in converting the received light energy

into useful electric current [Ref: 1]. While minor improvements were made up

through the 1930’s, solar cells were not considered as a potential power source

until Russell Ohl developed the first silicon solar cell in 1941 [Ref:1]. Subsequent

improvements by Pearson, Chapin, and Fuller brought the cell’s efficiency up to 6

percent in 1954 [Ref. 1].

Today’s single-junction solar cells range in the 15-20 percent range.

Triple-junction solar cells, with individual junctions stacked on top of one another,

have been fabricated with an advertised efficiency of 29.3 percent [Ref. 2]. The

field is always expanding with research on various construction techniques and

potential new compounds for use in the cells. Recently proposed designs could

increase cell efficiency well into the mid 30 percent range. However, at this time,

these types of cells are too costly for most applications.

Unlike terrestrial applications, spacecraft operate outside the light-

degrading effects of Earth’s atmosphere; solar cells are exposed to significantly

more solar energy. In addition, solar cells offer one of the only renewable energy

sources for a satellite in orbit. With the cost of putting something in orbit around

the Earth in the vicinity of $10,000 per pound, acquiring more advanced high-

cost, high-efficiency, multi-junction designs can be justified.

While the industry standard solar cell development process is fabricate-

and-test, researchers at the Naval Postgraduate School have developed a

software based model of solar cells which closely replicates the performance of

well-documented experimental cells of the same design. More recent efforts

 2

have turned to using the computer model as a design tool to optimize certain cell

parameters in order to attain maximum power output. The most recent

optimization approach used a genetic algorithm to improve solar cell

performance. In this thesis, the results Bates obtained through experimentation

with the genetic algorithm were compared with results obtained using the coarse

sampling/gradient ascent approach as well as a modified genetic algorithm

approach.

Chapter II covers solar cell operation, the theory of genetic algorithms,

and modeling solar cells using the Silvaco ATLASTM software. Chapter III

describes the previous optimization approach studied in this thesis. Chapter IV

gives the approach used for this thesis and the results obtained. Chapter V gives

conclusions and recommendations for further extension of this work. Appendix A

gives a more detailed description of the input decks used for Silvaco’s ATLASTM

software. Appendix B discusses the challenges in adapting input decks from the

Silvaco software running under Windows to a Linux-based computer. Appendix

C gives programmer’s notes and code excerpts on how the distributed

computation was accomplished. Appendix D gives programmer’s notes on

challenges faced using the MATLABTM Genetic Algorithm and Direct Search

Toolbox.

 3

II. BACKGROUND

A. SOLAR CELL BASICS (SEMICONDUCTOR BASICS)
Solar cells are essentially electronic devices that convert energy received

from a light source into usable electricity. Their construction and operation is

based on several material properties and some unique behavior when the

materials are combined in a specific way. This section documents those

properties and combinations which allow a single junction solar cell to operate.

1. Definition of a Material’s Bandgap
At present, silicon (Si) is the basis of construction of the majority of solar

cells. The reason for this has to do with Si’s unique atomic structure and material

properties. Recall that Si is a Group IV element with atomic number 14. The

Group IV designation denotes four electrons in its outermost shell. This occurs

because, as the atomic number increases, electron shells are filled in the

following order:

Figure 1. Order of electron shell filling [From Ref. 3]

 4

For Si, this means that in the first energy level, two electrons occupy the

1s orbital. Within the second energy level, two electrons occupy the s orbital and

six occupy the p orbital. Finally, within the third energy level, two electrons

occupy the s orbital and two occupy the p orbital. This makes a total of 14

electrons.

Figure 2. Silicon Electron Shell Diagram [From Ref. 4]

As a general rule, most elements are more stable when they contain a

total of eight electrons in their outer, or valence, shell. Si normally accomplishes

this through the formation of covalent bonds with other Si atoms. In this way, a

Si atom surrounded by four other Si atoms can share one electron with each of

the other four in order to have a “complete” outer shell. Note that in the following

diagram, only the outer shell electrons are shown.

 5

Figure 3. Silicon covalent bonds in a homogeneous mixture [After Ref. 5]

The center Si molecule shown above has eight electrons occupying its

outermost shell. The atom is fairly stable in this configuration and the eight

electrons are said to be in the valence band: these electrons remain with the Si

atom, requiring an external influence to break an electron free. A free electron

derived from a donor atom is said to occupy the conduction band. In the

conduction band, the electron is free to move throughout the material. When an

electron leaves its donor atom, a “hole” with net positive charge is created. The

energy required to promote an electron from the valence band to the conduction

band is called the material’s bandgap, as shown in Figure 5.

 6

Figure 4. Energy band diagram for three types of materials [After Ref. 5]

The green region represents the conduction band, the red region

represents the valence band, and the space in between is the bandgap. No

energy is required to allow electrons to move about freely within a conductor.

Conversely, a significant amount of energy is required to allow an insulator’s

electrons to move about freely. Semiconductors, of which Si is classified, fall

somewhere in the middle. At zero Kelvin, all electrons are in the valence band.

Once above zero Kelvin, electrons can gain enough energy introduced through

temperature or other external influences to move into the conduction band.

However, the number of electron-hole pairs formed in homogeneous Si at room

temperature is on the order 1010 total electron-hole pairs in a cubic centimeter of

Si [Ref. 6].

In order to increase the number of electron-hole pairs in a given volume, a

doping process may be used. Doping is a process by which impurities are added

to Si when it is made. For solar cell applications, doping is typically conducted

with Group III or Group V elements. For our first example, consider the addition

of arsenic (As) to pure Si. Arsenic is a Group V element with five electrons in its

outer shell. When placed in Si, it forms covalent bonds with four surrounding Si

 7

atoms, creating an outer shell with nine electrons, four shared and five in As’s

outer shell. The energy required for the ninth electron to reach the conduction

band is extremely low. As shown in the energy band diagram of Fig. 6, the ninth

electron moves into the conduction band. This is called n-type doping since it

frees negative charge carriers to move within the material.

]

Figure 5. N-Type doping using Arsenic (As) in Silicon [After Ref. 5]

P-type doping, on the other hand, introduces a Group III material into the

Si. In this example, gallium (Ga) is added. Since Ga only has three electrons in

its outer shell, covalent bonds with four adjacent Si atoms leave Ga with only

seven electrons in its outer shell. The missing electron is referred to as a hole.

The hole is a positive charge carrier and is the basis for calling this a p-type

material.

 8

Figure 6. P-type doping using Gallium (Ga) in Silicon [After Ref. 5]

2. The P-N Junction
Recall that even though a n-type material has electrons in the conduction

band, it is electrically neutral since the total material has just as many protons as

electrons. In addition to electrons, which are the majority carrier, a small number

of electron hole pairs are formed at room temperature simply by thermal energy.

The holes created from this process are called the minority carrier for a n-type

material. Consider what would happen when a thin layer of p-type material is

placed in direct contact with an n-type material. The first event that occurs is that

a small number of free electrons from the n-type material near the junction move

to fill holes in the p-type material. The movement of electrons out of the n-type

material leaves it positively charged. Conversely, the addition of electrons to the

p-type material gives it a negative charge. Similarly, a small number of holes

move from the p-type material across the junction into the n-type material where

they combine with electrons. This leaves a region of the n-type material with a

positive charge and a region of the p-type with a negative charge as with the

movement of electrons. This region is known as the depletion zone of a P-N

junction and the movement of carriers is known as diffusion current. This effect

quickly reaches an equilibrium because of a resulting electro-static field. The

 9

slightly positive and negative “poles” of the depletion region create a field

pointing from the n-type to the p-type material (from positive to negative charge).

Since like charges repel, the negative field in the depletion region of the p-type

material prevents movement of further electrons from the n-type material to the

depletion zone. The same effect occurs to prevent further movement of holes

from the p-type material into the depletion region. Recall that in the n-type

material there are a small number of naturally occurring holes termed minority

carriers. This electro-static field of the depletion region sweeps all minority

carriers into the depletion region.

Figure 7. Formation of the depletion region at (a) time zero and (b) equilibrium

[After Ref. 5]

At first inspection, it seems that one could attach contacts to the top and

bottom of this material and have a limitless source of energy. However, junction

effects between the semiconductor materials and the contact conductors prevent

the junction alone from generating energy. However, if an external energy

source can supply energy to the P-N junction in order to create electron-hole

pairs, a useful current may be created.

 10

3. Solar Cell Operation
A solar cell operates through the introduction of energy into the P-N

junction. Photons are the fundamental particle of energy transmission using

light. Photons traveling at the speed of light contain energy. When a photon

travels into a P-N junction, it can be absorbed by the material in the junction to

create an electron-hole pair.

Figure 8. Electron-hole pair generation through a collision with a photon [After
Ref. 5]

Without a conductor on the top and bottom of the P-N junction, the

electron and hole would move around and eventually recombine to release

energy in the form of heat. However, if the P-N junction is made sufficiently thin,

an electron generated in the n-type material will be swept into the top contact and

its corresponding hole will be swept into the depletion region because of the

electro-static field. The electron will then travel through a circuit and then

recombine with a hole generated in the p-type material or be swept back into the

depletion region by the electro-static field. Conversely, holes created in the p-

type material move in the opposite direction: this creates a current in the circuit

which may be harnessed to accomplish useful work.

 11

Figure 9. Solar cell in operation [After Ref. 5]

4. Solar Cell Performance
a. Techniques of Characterization
In measuring solar cell performance, standard electrical units are

used. Typical benchmarking of cells occurs using specially designed lighting

equipment which accurately reproduces the spectral content and intensity of light

encountered in space. The normal means of displaying this data is through the

current-voltage (IV) curve of the device. The curve indicates what voltage and

current the device will produce for a given load. In addition, it defines the open-

circuit voltage (Voc) and short-circuit current (Isc) for the cell. The Voc is the

maximum voltage the device will produce and is measured with no load attached

to the device. The Isc, on the other hand, is the maximum current the cell can

produce and is measured with a zero voltage or short circuit. Figure 10 shows

the elements described above.

 12

Figure 10. IV curve for a typical solar cell [After Ref. 6]

Based on the IV curve of a solar cell, a couple benchmarks for cell

performance can be derived. The first, efficiency, is based on how much output

power is generated compared to the amount available from the light source [Ref.

6].

 100%mp

in

P
P

η = • (1)

In equation (1), η is the efficiency of the cell, Pin is the power

provided by incoming light, and Pmp is the power generated by the cell calculated

using equation (2).

 P I V= • (2)
Second, the fill factor is a measure of the sharpness of the knee of

the IV curve. A fill factor of 1% would be a flat curve while a fill factor of would be

a right angle. Equation (3) shows how the fill factor is derived [Ref 6].

 100%mp

oc sc

PFF
V I

= •
•

 (3)

 13

Note that efficiency and fill factor may be derived from data on the

IV curve as long as the incident light intensity is known. For this thesis, efficiency

calculations are based on an incident light energy of 135 milliwatts per square

centimeter. Current single junction solar cells have efficiencies in the 15% range.

b. Hindrances to Performance
The factors affecting cell performance are numerous, such as those

listed below from Ref.5:

1. Light incident on a cell’s surface is prone to reflection. This is a

combination of the angle of incidence of the light and material properties. An

angle of incidence far from perpendicular combined with a highly reflective

material on the cell’s surface may account for up to 36% reflection of the

incoming photons. Specially designed anti-reflective coatings on a cell’s surface

may reduce the amount of light reflected to approximately 5% as long as the

angle of incidence is close to perpendicular.

2. Not all photons are created equal. Some photons do not have

sufficient energy to promote an electron from the valence band to the conduction

band. However, these photons can still be absorbed and result in the generation

of heat. Heat in an electrical device yields increased resistance and a lowering

of cell performance.

3. Photons with too much energy will promote an electron to the

conduction band and also generate excess heat.

4. While the electro-static field of the depletion region sweeps charge

carriers to opposite sides of the cell, some internal recombination does occur

with a resulting heat gain.

5. Resistance in the metal contact materials causes a drop in output

power and increases cell temperature.

6. While the manufacture of solar cells is a refined process, it is still

subject to material defects. Imperfections in the semiconductor crystal structures

degrade cell performance.

 14

7. The conducting grid on the top of a cell shades approximately 8%

of its top surface area. These contacts do not allow light to pass through into the

cell.

8. If the cell is above or below its designed operating temperature, the

vibration of the crystal lattice structure will interfere with the movement of charge

carriers through the cell.

9. A photon is a very small particle as are the atoms in a crystal

structure. Not all photons traveling into a solar cell will be absorbed by a

semiconductor atom. Some of this effect is mitigated through the addition of a

reflective surface on the bottom of the cell. This doubles the opportunity for

absorption by forcing the photon back through the cell on its return trip.

B. MULTI-JUNCTION SOLAR CELL FUNDAMENTALS
1. Principle of Operation
As discussed in part A, a material’s bandgap defines the amount of energy

required to move an electron from the valence band to the conduction band.

Light photons contain varying amounts of energy. The energy contained is

inversely related to the wavelength of light which contains the energy. The

equation

 hcE
λ

= (4)

defines the energy E in Joules where h is Planck’s constant (4.136×10-15

eV·sec), c is the speed of light (3.0×108m/sec), and λ is the wavelength of light

being considered [Ref. 6]. In total, there is approximately 130 milli-Watts(mW)

per square centimeter (cm2) of energy available in Earth orbit [Ref. 6]. Since h

and c are constants, the equation may be reduced to:

 1.24E
λ

= (5)

where λ is measured in micrometers (microns) and E is in electron volts. Light

conditions in Earth orbit are commonly referred to as Air Mass Zero (AM0). The

light energy, however, is spread out among various wavelengths.

 15

A solar cell may be tuned to respond to different parts of the light

spectrum by adjusting the materials and construction of a cell. However, there is

not a single cell material which absorbs the entire spectrum of light. The

following figure shows the amount of energy contained in light in Earth orbit

(AM0) according to the wavelength of light and energy contained. The spectral

response of three cell types are plotted too. The plots show which portions of the

spectrum each of the different cell materials can capture to produce electricity.

The purple curve represents the total irradiance at given wavelength or energy

level in AM0.

Figure 11. Irradiance plotted by wavelength (lower left) and contained energy

(upper right) [After Ref. 6]

 16

2. Challenges with Multi-Junction Cells
a. Parasitic Junction and Tunnel Junctions
The goal in designing multi-junction cells is to select enough layers

with varying properties in order to capture and efficiently convert as much of the

available light spectrum as possible. The Holy Grail of solar cells is to reach

100% efficiency and generate 130mW/cm2 for every solar cell on a spacecraft.

However, all the conditions mentioned at the beginning of this chapter which

degrade solar cell performance also apply to multi-junction solar cells. In

addition, there is one technical difficulty with “stacking” individual junctions on top

of one another in a single cell. When two P-N junctions are put in direct contact

with one another, a parasitic P-N junction is formed between them with an

electro-static field opposing the flow of current between the two junctions as

shown in Figure 12a. This parasitic junction is strong enough to cause

unacceptable electrical losses within the cell by opposing current movement. To

mitigate the electrical losses, the introduction of a heavily doped reverse-biased

P-N junction between the two cells allows current to flow with minimal loss. This

P-N junction is called a tunnel junction and it creates an electro-static field in the

same direction as the P-N junctions of the top and bottom junction layers per

figure 12b.

 17

Figure 12. Simple stacking with parasitic junction(a) and tunnel junction (b)
[From Ref. 6]

With this tunnel junction in place, there is effectively a series

connection between junction-layers which allows current to flow with only a

minimal loss in voltage.

b. Materials Incompatibility
Another problem encountered with multi-junction cells is in the

compatibility of materials within the manufacturing process. While there have

been attempts to mechanically stack cells manufactured separately, the end

results were less than optimal. The final cell structure was much thicker and

heavier than desired. In addition, losses were encountered by the reflection of

light when passing between cells. Consequently, current efforts are on building

the entire cell as one unit known as a monolithic multi-junction cell. However,

when growing crystals of various materials on top of one another, the materials

must have compatible crystal lattice patterns to properly form. In some

 18

instances, a window layer may be grown on the top of the cell in order to bridge

some of the material differences, but this does not work in all cases.

Consequently, the process of selecting layers for a multi-junction cell must be

based on performance criteria as well as materials compatibility.

c. Shadowing Effect
Since layers of a multi-junction cell are stacked on top of one

another, light entering a bottom layer of the cell has already been filtered by the

layers above it. If the thickness of a top layer is increased, the top layer will have

increased performance but the layers below it will consequently receive less light

and have reduced photogeneration. Conversely, if the thickness of the top layer

is reduced, the top layer will produce less energy but will allow more light to pass

through to lower layers.

d. Electrical Limitations
When producing electricity, a monolithic solar cell looks a lot like

four dissimilar batteries connected in series. Each battery will have different

voltage and current ratings for a given electrical load. When connecting them in

series, their overall power production is governed by the following equation.

 total load junctionsP I V= ∑ (6)

As the number of junction layers increases, the load current

becomes a more difficult design concern. In order to harness the maximum

power from a junction layer, load current must be close to the junction layer’s

maximum power point current. However, junction layers based on different

materials can have quite different current-voltage curve characteristics, as the

examples in Figure 13 illustrate.

 19

Figure 13. Typical Current-Voltage curves for solar cells based on various
materials [From Ref. 6]

In order to obtain the most efficient power output from a cell, all the

current values at maximum power need to be matched. The solution to this is

related to the shadowing section explained previously. When a cell receives less

light, it normally produces an equivalent voltage but lower current. Conversely,

when light intensity increases, the cell normally produces more current at an

equivalent voltage. As described in the section on shadowing, the thickness of

each layer may be adjusted to produce more or less power and allow more or

less light to pass through to other layers. By optimally adjusting the thicknesses

 20

of each junction layer, the maximum-power current for all junction layers may be

matched in order to get the maximum power output from a multi-junction cell.

C. GENETIC ALGORITHMS
1. Concept and Typical Applications
There are some optimization problems in science to which there only exist

complex and computation-intensive solutions. The optimal placement of

electrical components on a circuit board or on a chip, the optimal routing of

garbage trucks in a large city, and the discovery of optimal robot limb trajectories

are just a few examples. In some of these problems, there may exist a method

to solve for a solution but it would require too much computation time to be useful

in the application. In other types, no one has found a way to directly solve for an

optimum solution without first testing every possibility and choosing the one with

the best result. Decomposing a problem into its parts and then combining the

separate answers will sometimes have unpredictable results. A classic example

used to illustrate this situation is the traveling salesman problem. Consider a

traveling salesman with a sales area encompassing sixteen cities. In order to

make his rounds, the salesman wants to visit all sixteen cities in a single trip.

However, since gas prices keep rising, he wants to pick the order to visit cities so

that he will travel the shortest path possible. For example, possible routes are 1-

2-3-4-5-6-7-8-9-10-11-12-13-14-15-16, 16-15-14-13-12-11-10-9-8-7-6-5-4-3-2-1,

1-3-5-7-9-11-13-15-2-4-6-8-10-12-14-16, etc. Upon analysis, the total number of

routes is N factorial, where N is the number of cities[6]. In our example of a 16

city traveling salesman problem, this is a hefty number.

 16! 20,922,789,888,000routes = = (7)

However, this number may be cut in half since every sequence of cities

has an exact opposite route with the same length. While this would be nice for

variety for the salesman, the two routes would have the exact same length.

Therefore, the revised number of routes is only ten trillion.

Genetic algorithms represent a class of approximation techniques based

on modeling the processes through which organisms breed in nature. An

 21

organism contains genes composed of individual chromosomes which define all

aspects of the organism: hair color, skin tone, number of toes, brain size, etc.

When the organism breeds with a member of the opposite sex (typically), the

genes of the offspring are a mixture of the genes of the two parents. To see how

this improves genes over time, we must consider an entire population of

organisms. Based on genes, a specific organism has a better or worse chance

of both surviving and breeding to produce an offspring. The concept of natural

selection is that those organisms with poor combinations of genes are less likely

to reproduce. By extension, the population, over time, becomes a mix of

organisms which contain only the best genes as handed down from successful

parents. Those organisms which contain the bad combinations are more likely to

die off without reproducing. In addition, mutations occur spontaneously in nature.

Some genetic material is randomly changed by various events. When this

improves an organism, the mutation is likely to remain and spread through the

population over time. In order to see how this process could be applied to a

problem in science, an example of applying a genetic algorithm to solar cell

optimization will be given.

2. Illustrative Example: Modeling the Single Junction Solar Cell
Drew Bates, a previous researcher at the Naval Postgraduate School,

applied a genetic algorithm to optimize the performance of single-junction solar

cells. The following text will explain how the problem in question was modeled

using the genetic algorithm. A more detailed treatment of his process may be

found in Ref. 7. The first step of applying a genetic algorithm is to define the

problem and find a way to represent the problem numerically.

a. The Problem to be Solved
An individual junction layer solar cell actually consists of several

layers of material. Within those layers, each region is made of a certain material

with a specified thickness and doping concentration. The genetic algorithm used

to optimize the cell design was focused on picking the best thickness and doping

levels for four of the layers within the cell, namely the window, emitter, base, and

back surface field. A sample cell layout showing these traits may be seen in

 22

Figure 14. Note that the bottom and top contacts as well as the cap and anti-

reflective coating are not being optimized.

Figure 14. Example of Single Junction InGaP cell [After Ref. 7]

b. Numerically Representing the Problem
One of the methods of implementing a genetic algorithm is to

represent trait values using binary strings. In practice, this allows the bits of an

individual chromosome to be treated abstractly. Bates designed a 32-bit binary

string with which to encode the eight traits with a resolution of four bits per trait.

Figure 15. Encoding of traits into a 32-bit chromosome [From Ref. 7]

In practice, however, the base thickness was made a dependent

variable and the chromosome was given a dummy bit value for base thickness as

a placeholder. This allowed the researcher to specify an overall junction layer

 23

thickness. The base thickness was then calculated by subtracting the window,

emitter, and back surface field thicknesses from the specified overall thickness.

Quantization, in this case, is the process of assigning trait values to the discrete

binary representations. For each trait, a four-bit binary identifier gave the ability

to specify 16 different levels for each trait. The following scheme was used for

quantization.

Table 1. Quantization scheme for chromosome encoding [From Ref. 7]

Note: When conducting optimization, all elements other than the

above traits of an input deck were held constant. It has been noted that some

changes may be needed in input decks for modeling carrier mobility at doping

levels as high as 1e20. This should be addressed in further research.

c. Executing the Algorithm
In general a genetic algorithm follows the repetitive process

outlined in Figure 16.

 24

Figure 16. Simplified flowchart for genetic algorithm

To create the initial population, 35 random binary 32-bit strings

were generated. In order to compute the fitness value of each chromosome, the

trait values were first determined by converting the binary string into real values

as shown in the quantization table. These values were then written into a Silvaco

ATLASTM input deck (described in detail in Appendix A). The Silvaco tools

provided data on the cell’s expected IV curve and therefore the solar cell’s

expected performance. The maximum output power was used as the cell’s

fitness value. Once fitness values were determined for all 35 chromosomes, the

algorithm evaluated whether or not its stopping criteria had been met. In this

case, the genetic algorithm first checked if it had been running for at least 16

generations. If so, it checked to see if the maximum fitness value had changed

within the past three generations. If the algorithm had completed 18 generations,

the standard was reduced to a 99.9% match in maximum output power for the

past three generations. If the algorithm completed 20 generations, it was

stopped

 25

regardless of fitness value trends. If none of these stopping criteria had been

met, the algorithm then proceeded to breed the chromosomes for the next

generation.

d. Breeding a New Generation
In this implementation, breeding took on the process depicted in

Figure 17. As will be discussed later, there are many variations in the details of

this process.

Figure 17. Breeding Process Flowchart

The breeding proceeded according to the following process. First,

using an elitist strategy, the best performing chromosome was carried over to the

 26

next generation. Next, a roulette wheel style selection mechanism was

employed. Implementation of the roulette wheel was based on two ordered lists.

The first list was simply a sorted list of fitness values from highest to lowest. The

second list consisted of a sum of a given fitness value and those below it on the

list. A random number was then generated between zero and the highest

number in the second list. The first value in the second list equal to or higher

than the random number indicated a parent to be used in breeding. This process

was carried out 34 times in order to generate 17 pairs of parents.

Figure 18. Roulette wheel list generation (a) and selection mechanism (b) [From

Ref. 7]

Once parents were chosen, the actual breeding of child

chromosomes was handled through a dual-point crossover routine. To imagine

the crossover routine, consider the two parent chromosomes laying side by side.

In dual-point crossover, two points are chosen along the length of the

chromosome. Between those two points, the genetic material of the parents is

switched when creating the child chromosome as depicted in Figure 19.

 27

Figure 19. Dual-Point Crossover [From Ref. 7]

The dual point crossover was implemented with 90% probability.

This means that in 10% of the operations, the children were simply left as the

parent chromosomes. These methods produced the remaining 34 chromosomes

for the next generation.

Finally, a one percent probability of a single bit-flip mutation was

introduced to allow the algorithm to continually search new areas of the solution

space.

Figure 20. Mutation of Bit Values in a Chromosome [From Ref. 7]

All genetic algorithm procedures, input deck generation, and result

analyses were conducted using MATLABTM-based output power analysis tools

developed by previous researchers. Results of this process were favorable and

 28

showed, on average, a seven to eight percent improvement in maximum power

compared to previous research [Ref. 7].

3. Nuances of Genetic Algorithms
As mentioned previously, genetic algorithms can be implemented in many

ways. Holistically, the design of a genetic algorithm is a balance between

focusing the algorithm on the solution space and giving it enough randomness to

continually search new spaces. If too much structure is given, the algorithm is

more likely to get trapped within a local maximum of the solution space. If too

much randomness is used, good genetic material such as an ideal trait value

may take longer to take hold in a population or may be entirely wiped out through

mutation. In this section, a few of the genetic algorithm design considerations

relevant to this thesis will be discussed. A very thorough coverage of genetic

algorithm design approaches and applications may be found in Ref. 8.

a. Population Size
The small population size used for this implementation was

primarily a product of the limited computation power available. However, the

population did allow the researcher to ensure that every trait value was

represented in at least one chromosome of the initial population [Ref. 7]. In

addition, the population size of 30 was specifically mentioned in the text of Ref. 8

along with recommended crossover and mutation settings.

b. Selection Strategy
Roulette wheel selection is one of the most common methods used

in genetic algorithm implementations. Ref. 8 categorizes selection strategies

according to bias, spread, and efficiency. Bias refers to the probability of

selection of a specific individual chromosome. Spread refers to how many times

an individual may be simulated. A large spread means the majority of the

solution space is equally likely to be selected. A small spread means the

algorithm is more likely to in-breed. The efficiency of a particular selection

strategy is defined by how efficiently it can be implemented. While selection

does take computer time, this time is orders of magnitude less than the amount

of time required for simulations. Therefore, efficiency of the selection strategy is

 29

inconsequential in this work. Roulette wheel is classified as zero bias and

potentially unlimited spread. Stochastic uniform sampling is another method with

zero bias but low spread. Another method chooses parents based on their

absolute ranking regardless of the actual fitness values. This is known as a

ranking scheme and helps prevent premature convergence of a population [Ref.

8].

c. Crossover Settings
As mentioned, this approach uses a dual-point crossover strategy.

This type of a crossover strategy can be implemented with a single point

crossover up to one less crossover point than the population size. The latter

would end up switching every other bit during crossover. Several papers have

debated the merit of different approaches, but dual point seems to be effective in

most applications. Another method, known as uniform crossover, creates a

randomly generated mask which is the same length as a chromosome. A zero at

any point of the mask denotes no crossover while any one signifies that a bit

crossover occurs.

Figure 21. Example of uniform crossover [From Ref. 8]

 30

The selection of a crossover scheme goes back to the holistic view

of how much randomness versus how much structure is best for a particular

application. In the case of crossover, most schemes only allow crossover to

occur at the boundaries between traits. In this way, the basic building blocks of

the chromosome are preserved. Genetic algorithm theory predicts that the

development and perseverance over time of good genetic material building

blocks is often credited with a large part of why the algorithm works. However, in

some applications, a greater degree of randomness is desirable to prevent the

premature convergence of a population. Uniform crossover, as described,

randomly generates a crossover mask which may or may not violate trait

boundaries. While there are other crossover schemes, a few have been

presented along with the overall tradeoff being managed. For every research

paper which showed conclusive results that one crossover method worked

better, there is another which states the exact opposite. The consensus is that

there probably is an optimum approach to a specific application. However, what

works in solar cell optimization might not be the best method for routing garbage

trucks in New York City or the placement of electrical components on a circuit

board.

d. Probability of Mutation
Similar to crossover methods, the schemes for choosing crossover

and mutation probability rates is highly controversial. For mutation, the tradeoff

is more simple to understand. At 0% mutation, there will never be any random

perturbations introduced into a population. Convergence of the solution set will

likely be a one way process and it will be unlikely to escape a local maximum. At

100% mutation, the genetic algorithm simply becomes a random search of the

solution space. Therefore, in any application, it is important to observe initial

results in order to determine if premature convergence is a problem and then

adjust the mutation rate. In many efforts, a linear adjustment is made as the

algorithm progresses. In this approach, the mutation rate is slowly increased in

subsequent generations while the crossover rate is decreased. Building on

these, there are numerous schemes of how to adjust the rates as the algorithm

 31

progresses. Once again, this points back to the original holistic view of trading

between randomness and structure within a genetic algorithm implementation.

D. MODELLING CELLS IN ATLASTM SILVACO
1. Origins of the Cell Model
Until recently, the solar cell industry’s only available method of

experimentation was to fabricate and then test solar cells. The physical

processes involved in cell fabrication make this approach cost prohibitive when

many permutations on the design must be tried. However, in the past five years,

researchers at the Naval Postgraduate School have been able to accurately

model single and multi-junction solar cells within the Silvaco TCAD tool suite1.

The Silvaco tools create a physical-based model of a semiconductor device

within a two or three dimensional space. The physical model includes sizes,

thicknesses, doping levels, material properties, etc., of a device. Next, a mesh

structure is created within the device to define where analysis is to be conducted.

Finally, operating parameters are established and measurements are made by

solving a set of differential equations at each mesh intersection. The user can

define a device using a standard ASCII text file in a format called an input deck.

The TCAD tool suite’s DeckBuildTM application may be used to edit, debug, and

run input decks. It can also run in a non-graphical batch mode to simulate

numerous input decks or as remote sessions. DeckBuildTM parses the input file,

builds the physical model of the device, sets parameters, and then calls on the

TCAD suite’s individual tools as needed to conduct the simulations. In order to

best illustrate the flexibility allowed within the TCAD tool suite, Appendix A

contains an entire input deck and explains the various settings. In addition, Ref.

9 is the software’s user manual.

1 The Silvaco TCAD tool suite allows physically based models of semiconductor devices. It
is used in modeling a wide range of electronic devices. To learn more, visit Silvaco’s web site at
http://silvaco.com/products/TCAD.html last accessed September 2006

 32

2. Previous NPS Research Progress
a. Michalopoulos
Panayiotis Michalopoulos was the first researcher at NPS to identify

the Silvaco TCAD suite as a potential method of modeling solar cells. He

developed the first single junction cell models and validated them against

published results. Further, he continued by modeling well-documented dual

junction cells and validating them against published results. When constructing

the cells, Michalopoulos was able to model and test a tunnel junction between

layers of the cell. Finally, he modeled and optimized a triple junction solar cell

and validated the results against published performance data. However, in the

triple junction cell, the publication used did not give the actual physical structure

used in cell construction. Michalopoulos was able to predict cell construction

based on lessons learned in previous simulations and his performance data

closely matched the published results. In building the original model,

Michalopoulos conducted extensive analysis of publications to best define the

material properties of the relatively exotic materials used in single and multi-

junction cells. The results of his research are published in his master’s thesis

[Ref. 10].

b. Green
Max Green, another NPS researcher, conducted an extensive

validation process on Michalopoulos’ work while re-creating the Silvaco cell

models. Although the majority of the cell configurations were validated, the

tunnel junction model was found to be incorrect. Michalopoulos’ tunnel-junction

model was not set up correctly and did not have the correct current-voltage

characteristic curve. When the construction was corrected, the model did not

function correctly. No researchers have since been able to get the tunnel

junction working correctly. A thorough discussion of this challenge is given in

Chapter VII Part D of his thesis. Green continued his validation work by

mechanically stacking the cells. His final step was to construct a four-junction

 33

cell based on adding an InGaNAs layer. The cell was modeled and it’s

theoretical output levels were computed. The results of his research are

published in his master’s thesis [11].

c. Bates
Drew Bates, yet another NPS researcher, pursued two major

research thrusts: (i) cell optimization and (ii) using different light spectra. He

started by designing a genetic algorithm for use in optimizing each junction layer.

After realizing improved performance in each layer at various thicknesses, Bates

developed an iterative current-matching technique for adjusting the thickness of

each junction layer in order to maximize overall cell output. The iterative current

matching technique improved simulated cell performance. Bates final work was

to optimize the design of a triple-junction cell under the Martian light spectrum.

As predicted, a cell optimized for Earth orbit is not optimally tuned for

performance on the Martian surface. By adjusting thickness and doping levels

from an Earth-optimized cell, better performance can be obtained under Martian

conditions. The results of his research are published in his master’s thesis [Ref.

7].

d. Crespin
A fourth researcher at NPS to work in this research area was Aaron

Crespin. One of the primary drivers in spacecraft solar array design is the loss in

array efficiency caused by radiation effects. Crespin successfully modeled

radiation effects in a single-junction Gallium-Arsenide cell using Silvaco

ATLASTM. The cell’s degraded performance with the radiation effects closely

matched published research showing results from experimenting with real cells.

Extension of Crespin’s work could potentially lead to optimized cell designs which

degrade gracefully over a spacecraft’s life despite the effects of the cumulative

dose of radiation exposure. The results of his research are published in his

master’s thesis [Ref. 12].

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

III. PREVIOUS OPTIMIZATION APPROACHES AND THE CASE
FOR DISTRIBUTED COMPUTING

A. DREW BATES’ GENETIC ALGORITHM AND ITERATIVE CURRENT
MATCHING APPROACH
Drew Bates approach to optimizing single-junction solar cells is the use of

a genetic algorithm as outlined in Chapter II. His results found optimal

configurations of the individual junction layers for several cell types and

thicknesses.

The method used for assessing the quad-junction cell was to subject the

cell to an iterative current-matching. The routine begins with a multi-junction cell

with thickness values slightly larger than the expected optimum values. The

routine then evaluates the current-voltage curves of each junction layer by

comparing the short-circuit currents. Short-circuit current was initially used as an

approximation of a junction layer’s maximum power current in order to save

computation time. Junction layers were initially paired up with the top two and

bottom two layers together. In order to match current within the pairs, parametric

analysis of thicknesses for the upper and lower half of the pair were made. Once

the upper and lower pairs’ current converged within 99.6%, the second and third

layer currents were compared for one iteration, followed by adjusting the

thickness adjusted to match currents for the two pairs. This process was

repeated until all four junction layers were within 99.6%. At this point, the routine

switches mode, from matching short-circuit current to matching max power

current. The routine ends once all four max power currents are matched.

Pseudocode for this routine is listed below. Note that in this pseudocode the

symbol <> denotes the lack of convergence within 99.6%.

procedure iterative_current_match
 var
 Isc1, Isc2, Isc3, Isc4, Imp1,Imp2,Imp3,Imp4 : double
 thickness1,thickness2,thickness3,thickness4 : double
 begin
 Initialize thickness1,thickness2,thickness3,thickness4 to values well

 36

 above their expected optimal thicknesses

 while Isc1<>Isc2<>Isc3<>Isc4

 {in other words, while the currents have not converged}
 Isc1, Isc2, Isc3, Isc4=simulate cell(thickness1,thickness2,
 thickness3,thickness4)
 while Isc1<>Isc2 or Isc3<>Isc4

 {This part of the loop adjust thicknesses between pairings of
 the upper two and lower two layers}
 if Isc1>Isc2
 Reduce thickness1
 end;
 if Isc1<Isc2
 Increase thickness1
 end;
 if Isc3>Isc4
 Reduce thickness3
 end;
 if Isc3<Isc4
 Increase thickness3
 end;
 Isc1, Isc2, Isc3, Isc4=simulate cell(thickness1,thickness2,
 thickness3,thickness4)
 end;
 {Once pairings have been current-matched, now adjust
 thickness to match the two pairings}
 if Isc2>Isc3
 Reduce thickness2
 end;
 if Isc2<Isc3
 Increase thickness2
 end;
 end’
 while Imp1<>Imp2<>Imp3<>Imp4
 Same as above loop but comparing max power current vice
 short circuit current
 end;
 end;

The current matching routine successfully increased the quad-junction

cell’s power output by approximately seven percent. Figure 22 illustrates the

convergence of individual junction current levels as the routine progressed over

100 iterations.

 37

Figure 22. Results of Bates’ iterative current matching routine for four-junction

cell [From Ref. 7]

B. THE CASE FOR DISTRIBUTED COMPUTING

1. Size of the Solution Space
The genetic algorithm approach used by Drew Bates on each junction

layer creates a large space in which to search for a solution. Each cell

configuration or chromosome is represented by a 28-bit binary number. Each bit

has two possible values, zero or one. The total size of the solution space turns

out to be 228 [Ref. 13].

Bates used a single Pentium IV 2.52 GHz computer with 1GB of RAM to

conduct simulations. Using this platform, he found that it was possible to run a

single simulation every 2 minutes of computer time. Using this method, an

exhaustive search of the solution space would take an unacceptably long time,

roughly 13,003 years.

In addition, sometimes the ATLASTM simulations would produce corrupted

data causing the system to halt; restarting the simulation required manual

intervention. Bates genetic algorithm implementation had a population size of 35

and was halted if it did not converge within 20 generations. Assuming each

 38

member of each generation was unique, this would only cover 700 of the

possible 268,435,456 solutions. In addition, the genetic algorithm re-introduces

chromosomes by breeding and mutation. Bates observed that each optimization

run only tested approximately 300 unique chromosomes and would take

approximately 24 hours of computation time without runtime errors.

However, testing such a small portion of the solution space begs the

question of whether or not the algorithm converged in a local maximum. Most

research papers on genetic algorithms will show results up to 500 generations

depending on the complexity of the problem. In order to better search the

solution space, more computation power was needed.

Two possible approaches to speeding up this process are to purchase or

build a faster machine to do the work or to distribute the computational tasks

among many computers. The latter approach was chosen as described below.

2. Distributed Computing Approach
By Flynn’s taxonomy, computing algorithms may be classified as Single

Instruction Single Data (SISD), Multiple Instruction Single Data, Single Instruction

Multiple Data, and Multiple Instruction Multiple Data [Ref. 14]. A commonly used

derivative of this is Single Program Multiple Data (SPMD). When comparing

algorithms using these distinctions, an engineer gains insight into the best way to

implement a distributed computing application. As an example, a SISD is

represented by a desktop personal computer running applications in series. In

the case of simulations of solar cells, SPMD is an appropriate model to apply

since the majority of computation time used by Silvaco ATLASTM is for simulating

the solar cell design. At this time, the software is not designed to split a single

simulation over multiple processors. The multiple data aspect describes the

numerous cell designs to be simulated. Accordingly, a simple and ideally

distributed computing algorithm is to centrally manage the assignment of

simulations to a large number of separate computers, which could in turn run

simulations locally and report back their results.

 39

3. Choosing a Distributed Computing Platform
Next, a search was initiated to find what types of distributed computing

software were available to support this approach. While numerous approaches

were found on the web, many of them required the use of a programming

language unique to the platform. Consequently, these were not considered and

the focus of the search was placed on systems which allowed the use of fairly

standard programming languages with minor modifications to allow the

coordination of numerous machines. Four primary systems were considered and

each is briefly described with a comparison chart following the descriptions.

The Berkeley Open Infrastructure for Network Computing (BOINC) is an

open source system designed for distributing computing work across the internet

[Ref. 15]. It was based on the Search for Extra Terrestrial Intelligence (SETI) at

home project which distributes radio telescope recordings to volunteer computers

worldwide which then conduct signal analysis on the recorded data and report

back their results [Ref. 16]. By downloading a simple client, a user may define

the amount of computer resources which may be used (idle time only, memory,

hard drive, cpu percentage, etc) and enter the web link for projects they wish to

participate in. The client then logs into the projects, downloads any needed

software and data files, and then commences work according to the user

preferences. Users may also participate in several projects and define the

amount of computer resources devoted to each project. The project sponsor

uses a different version of the BOINC software which tracks users, data files,

software versions, etc. This server software is not simple to install but there is

ample help from UC Berkeley and other established projects available. The

limiting factor, however, is that the solar cell simulations require use of the

proprietary Silvaco TCAD suite of software. Freely distributing this to volunteers

across the internet would be illegal.

The next two systems considered were the Parallel Virtual Machine (PVM)

[Ref. 17] and Message Passing Interface (MPI) [Ref. 18] packages available for

Unix/Linux and Windows platforms. While they differ in implementation, they

 40

both offer a similar approach to a distributed computing solution. When installed,

the PVM or MPI software acts as a buffer between the distributed programs and

the operating system on each machine being used. The packages handle the

housekeeping functions necessary to coordinate numerous machines. These

functions include the passing of data (messages), booting and shutting down

processes on a number of computers, process monitoring and control, etc. The

programmer may write in C/C++ or Fortran and compile the code using a slightly

modified compiler which includes the commands for accessing all the distributed

computing functions. PVM’s tutorial’s were last updated in 1997. The LAM MPI

web site was current with a full, proctored, free tutorial which was updated in

2006. Both LAM-MPI and PVM are available as installed features within Redhat

Enterprise Linux (RHEL) and Fedora (the free version of RHEL).

MATLABTM has recently developed a distributed computing toolbox which

allows some of the functionality needed. However, at the time this research

began, the toolbox had been recently released and was still in heavy

development. The other downside is that MATLABTM is a commercial product

and has a significant cost. Depending on home many clients are to be run, this

can range from $2,000-$5,000 [Ref. 19]. The preferable approach is to have

processes run in the background. Their second release of the toolbox appears to

be more fully featured and allows processes to run in the background. The

toolbox is based on the MPI packages adapted for use within MATLABTM.

 Maturity Learnability Failure

Tolerance
Programming

Language
Cost

BOINC 2 2 3 Any Free
LAM 5 5 4 C++/Fortran Free
PVM 5 4 4 C++/Fortran Free
MATLABTM 2 5 1 MATLABTM $2,000-

$5,000

Table 2. Comparison of Distributed Computing Approaches

 41

While weighing this decision, two additional factors were introduced. First,

a new lab was built with 18 dual processor machines with ample memory running

on Linux. The lab was built for the Oceanography department and was not yet

being utilized. Second, the school was becoming increasingly concerned about

energy conservation. This meant that the majority of lab machines were

remotely shut down at night. Since the majority of Linux and Unix users work

remotely, the Linux and Unix machines are generally exempt from this automatic

shutdown. With the pre-installed packages with free compilers and development

software available under Linux, the lab was the best candidate. LAM-MPI was

chosen over PVM because of the more recent training products and its continued

development and support on the Web.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

IV. RESULT VALIDATION

A. DISTRIBUTED COMPUTING IMPLEMENTATION
1. Hardware Setup
The platform used for running the optimization application consisted of a

network of 18 dual-Xeon processors, each with 1GB RAM. In addition, two

Pentium III desktop computers handled administrative functions: One was used

as a file server for all data and working directories, while the other was used as a

distributed-system monitor [Ref. 20].

Figure 23. Original Lab Setup

2. Software Setup
a. Operating Systems
All lab machines were configured with Red Had Enterprise Edition

Linux (RHEL) and received occasional upgrades from IT support personnel. The

two desktops used for file sharing and software development were set up with

 44

Fedora Core 3 (FC3), an open source operating system which functions as a

testbed for development for RHEL. Typically Fedora Core releases test newer

features and work out the bugs before software is incorporated into the more

stable RHEL operating system. Since the Fedora Core series has many more

“bleeding edge” packages, it provided a more feature rich and easy to support

system for software development. The core packages were similar enough to

interoperate without problems. However, the LAM MPI packages for FC3 had

developed up to version 7.1.1-7 while RHEL only had version 6.5.9-1. The two

versions were not compatible. When software was compiled on the development

desktop, it would not execute on the computing platform. An older package was

located for the development desktop and reverted to version 6.5.9-3. While a

slightly different version, they proved compatible in execution.

b. Distributed Computing Scheme
The distributed-system monitor and hill-climbing optimization

application were written in the C programming language. C’s primary

advantages were familiarity to the author, numerous online tutorials and

references, and the ease of low-level process control. The software was

composed of a few thousand source lines of code. Some highlights of the code

follow. A more detailed treatment is given in Appendix C.

The master node of the distributed computing system was designed

to take a few inputs. The first was a file giving general simulation run

information. This included the location of input files, type of cell to be simulated,

location to store result files, how many times to retry failed simulations, how

much time to allow a simulation before aborting it, and other housekeeping

parameters. The second input was a set of three files which define the

chromosomes to be simulated, those which have already been successfully

simulated, and those which encountered simulation errors. Bates’ research

identified unique chromosomes by their decimal number. These three files were

simply ASCII encoded lists of chromosomes, one per line. This system allowed a

simulation to be resumed in case of system software error. The master node’s

 45

job was to read the input files, build the ATLASTM input decks, assign

chromosomes to clients for simulation, track overall progress, and consolidate

the results upon completion.

The client node of the distributed computing system had two

primary inputs. The first input was housekeeping data similar to the master

node. The second input was the client’s assignment from the master node. The

client took advantage of the C language’s facilities for low level process control.

The client receives an assignment and then spawns a new child process to enact

the simulation by running ATLASTM on the assigned file. The original parent

process periodically checks the operating system’s record of the simulation

process status to ensure it is still executing correctly. If the simulation went past

a specified time threshold, the parent process would kill the simulation and send

a failure notice back to the master node. If the simulation completed

successfully, the client would extract the data from the ATLASTM output file,

check it for validity, and save it in a more compact form for further analysis.

B. SINGLE-JUNCTION RESULT VALIDATION
1. Coarse Sampling and Gradient Ascent Method and Results
The first concern with Bates’ data was that it became trapped in a local

maximum and failed to adequately search the solution space. Through the use

of distributed computing, a coarse sampling and gradient ascent method was first

used. The strategy implemented in the hill climbing method was to first conduct

a coarse sampling of the solution space and then execute a gradient ascent

method on the best candidates found in this process. The following pseudocode

outlines this process.

procedure coarse_sample_and_gradient
 var
 list_of_chromosomes : array of 2187 int
 results ,gradient_resutls : array of 2187 int
 gradient_candidates : array of 5 int
 candidate,new_candidate : int
 loopcounter : int
 begin
 list_of_chromosomes=permutations(all trait values 1,8,15)

 46

 results=conduct_simulations(list_of_chromosomes)
 gradient_candidates=pick_best_five(results)
 for loopcounter=1 to 5
 candidate=gradient_candidate(loopcounter)
 while candidate≠new_candidate
 list_of_chromosomes=permutations(all trait values of
 candidate as well as plus and minus 1)
 gradient_results=conduct_simulations(list
 _of_chromosomes)
 new_candidate=maximum_of(gradient_results)
 if new_candidate>candidate
 candidate=new_candidate
 new_candidate=0;
 end;
 {if no improvement was found, the gradient loop exits, if an
 improvement was found, the gradient process repeats
 for the new candidate}
 end;
 store_newfound_local_optimum
 {algorithm would now loop and conduct the hill climbing on the next
 candidate}
 end;
 end;

The first consideration was how coarse of a sampling of the solution space

to make. The initial assumption was that an optimum position within the 15 trait

positions cannot be predicted. On one end of the spectrum is testing only one

value of each trait and the other end of the spectrum is testing all combinations of

every value of every trait. The following table shows how increasing the level of

granularity results in an exponential growth in computation time. The following

table shows the computation time required to achieve varying degrees of

granularity in the coarse sampling. The table assumes two minutes per

simulation and that the distributed computing system will consistently employ all

processors with three simulations running on each simultaneously. However, our

ability to run simulations was limited by 50 licenses of the Silvaco software and

that not all processors were always available. In addition, some re-tooling was

required in order to change between cell types. Within a single cell type, a hill

climbing approach was applied to the top 5 results of the coarse sampling and

each hill climbing application would normally run for five iterations or more.

 47

y d h m y d h m
20 7 1 20 0 0 0 40 0 0 0 0.741
20 7 2 2560 0 3 13 20 0 0 1 34.81
20 7 3 43740 0 60 18 0 0 1 3 0
20 7 4 327680 1 90 2 40 0 8 10 16.3
20 7 5 1562500 5 345 3 20 0 40 4 30.37
20 7 6 5598720 21 111 0 0 0 144 0 0
20 7 7 16470860 62 246 4 40 1 58 15 11.85
20 7 8 41943040 159 219 5 20 2 348 18 45.93
20 7 9 95659380 364 0 6 0 6 270 9 0
20 7 10 200000000 761 12 18 40 14 34 0 47.41
20 7 11 389743420 1483 15 7 20 27 169 6 21.48
20 7 12 716636160 2726 338 0 0 50 182 0 0
20 7 13 1254970340 4775 139 8 40 88 158 1 2.963
20 7 14 2108270080 8022 122 21 20 148 205 1 17.04
20 7 15 3417187500 13002 363 18 0 240 290 15 0

Distributed Computing
Computation TimeCell

Types
Values per

trait
Total

Permutations
Traits

per cell

Single Computer
Computation Time

Table 3. Computation Time required for varying granularity of coarse searches

of the solution space

For time’s sake, the three-values-per-trait approach was used. In order to

do this, trait values zero, eight, and 15 were used for each trait. This was chosen

to help test if the quantization range applied to the trait values was correct and to

give the widest possible solution space. Upon completion, the results shown in

Table 4 were obtained. In the table, the optimum found by Bates is listed

followed by the data from the best result using the methods outlined above.

Since Bates results were obtained under Windows-based Silvaco software, the

best results obtained under Linux were converted into Windows format and

simulated in the same manner used by Bates for consistency. The power values

in the tables were all generated under Windows.

Table 4. Coarse Sampling and Gradient Ascent Data for InGaP Cells

Cell Type Thickness Bates Hill Climb % diff
InGaP 0.25 175707 0.018398885 0.018224933 -0.945%
InGaP 0.50 99239 0.023158565 0.021891432 -5.472%
InGaP 0.75 46691 0.025264187 0.024779541 -1.918%

Configuration Power(W/cm 2̂)Total
Simulated

Coarse Sampling and Gradient Data for InGaP

 48

The disparity in total number of chromosomes tested has to do with the

software development process. The first configurations tested ran significantly

more times than later configurations because the distributed computing software

was still under development. A feature implemented early on was checkpointing

to aid in recovery from system or application failure. Other cell types tested

showed similar results to Table 4. In almost every cell type, the gradient ascent

process for the five best candidates led to five separate local maxima. In

addition, the local maxima were all of lower output power than the results

obtained by Bates using the genetic algorithm. This indicates that the solution

space is likely riddled with local maxima and that the traits do not all have a linear

effect on cell output power.

2. Distributed GA Method and Results
Upon completion of the hill climbing method, the next logical step was to

extend Bates’ work by using the genetic algorithm with the aid of the distributed

computing system. In order to simplify the GA portion of the programming, the

MATLABTM Genetic Algorithm and Direct Search toolbox was used. The toolbox

allows the rapid re-configuration of population, selection, crossover, mutation,

and most genetic algorithm properties without manual intervention and re-coding

of an application. Originally, the settings specified in Bates’ thesis were used.

His implementation used a uniform (random) initial population of 35, four-bit per

trait representation, roulette wheel style selection, dual-point crossover, and a

single chromosome elitist strategy. While the majority of these settings are

implemented in the MATLABTM toolbox, there are some minor differences. For a

more detailed treatment, see Appendix C.

For each cell configuration, the MATLABTM toolbox was set up to run for

50 generations before stopping to report results. In order to take advantage of

the distributed computing architecture already built, a MATLABTM routine was

written to store cell configuration data in a file and then send messages (via a

single one or zero in a file) to the distributed computing master node. When all

simulations were complete, the distributed system monitor would compile the

 49

results and then similarly signal MATLABTM that the results were ready.

MATLABTM would import the data, breed the next generation, and continue the

process. In order to introduce MATLABTM to the lab, a separate PC was used.

Distributed System
Monitor

Dual Xeon Dual Xeon Dual Xeon Dual Xeon

File Server

Dual Xeon Dual Xeon Dual Xeon Dual Xeon

18 total Dual Xeon “clients”

PC Running MatLab

Figure 24. Revised distributed computing platform

Early iterations of this process showed that the population would quickly

converge with little mutation by generation 15 and would show little improvement

or change from that point through generation 50. In order to better search the

solution space, the mutation rate was increased to ten percent. In most cases,

this type of tuning resulted in small incremental gains throughout the 50

generation optimization. This 50 generation approach with the increased

mutation rate was used on all 14 cell configurations.

 50

Cell Type Thickness 20 gen 50 gen % diff
InGaP 0.25 0.018398885 0.018401961 0.017%
InGaP 0.50 0.023158565 0.022275164 -3.815%
InGaP 0.75 0.025264187 0.025273847 0.038%
GaAs 0.50 0.024628965 0.024722282 0.379%
GaAs 1.00 0.028179029 0.028189460 0.037%
GaAs 1.50 0.029342492 0.029344780 0.008%
GaAs 3.00 0.030039575 0.030073571 0.113%
GaAs 5.00 0.029878681 0.029982369 0.347%
InGaNAs 1.03 0.018074821 0.018174204 0.550%
InGaNAs 1.55 0.018531643 0.018581991 0.272%
InGaNAs 2.06 0.018633871 0.018668836 0.188%
InGaNAs 4.00 0.018461029 0.018497504 0.198%
InGaNAs 6.00 0.018428607 0.018575130 0.795%

Table 5. Extended Genetic Algorithm Results through 50 Generations with

Increased Mutation Rate

C. MULTI-JUNCTION CELL APPROACHES

1. GA Real-Values Method and Results
Adapting distributed computing to the optimization of the combined quad-

junction solar cell is a more complex problem than the GA for single-junction

cells. Bates used the genetic algorithm on each of the individual junction layers

and then conducted an iterative current-matching routine on the combined cell.

Results of the current-matching routine were then used to choose the next

thickness of individual junction layers to optimize. The first question which

comes to mind is why the genetic algorithm was not applied to the entire cell.

While time may have been a limiting factor, the optimization process itself

combined with the current multi-junction cell model is a limiting factor. In the

modeling of the genetic algorithm on each single-junction, it was assumed that

the thickness values of individual layers in a junction would fall within certain

overall thickness ranges. Accordingly, the quantization process assigned

thickness values based on these percentages to a fixed binary mapping.

Applying this type of process to an overall multi-junction cell would be limiting. In

addition, the programming of such an approach would be quite tedious.

 51

The MATLABTM GADS toolbox has the ability to represent chromosomes

and traits as bits or as real valued numbers. If binary is used, the user must

provide their own functions for decoding and encoding the chromosomes for use

in the fitness function. Using the MATLABTM real number feature allows the

numbers to be directly applied. In addition, the user may specify bounds for real

valued numbers. This accomplishes the bounding used in Bates’ quantization

without the artificially constraining bit increments to values; the toolbox also

allowed for a much simpler programming approach.

The final experiment of this thesis was to attempt such an approach.

Since the distributed computing architecture was designed to take a file listing

chromosome numbers as its argument, significant re-tooling was required in

order for it to take an input of real valued numbers. This also presented a

dilemma of how to store results. With a 28-bit chromosome used in single

junction cells, each chromosome could be represented by a unique number

which was realizable in most computers using an unsigned integer. When using

real values, the solution space is infinite. Consequently, individual chromosomes

were identified only by generation and a sequential list of numbers within that

generation.

Using a random initial population, the simulations seemed to all get an

identical power output value. When the trait data from Bates’ previously

optimized cell was introduced, it would get one (higher) output value and the

remainder of the chromosomes would have an identical (lower) output value.

The reason for this is not certain, but there are a few explanations to consider.

2. Possible Explanations for the Results
The first is that the comparisons being made are at a high level of detail.

On individual junction layers, comparisons between optimal designs differ in the

microwatt range. Multi-junction cells of similar construction differ in the low

milliwatt range. It is possible that the randomly generated cell properties

produced cells whose output power does not differ that significantly. However,

as successive generations mixed attributes of the optimized cell and the truly

 52

random ones, no intermediate power output values were found. This is contrary

to expected results. Another explanation is that error is introduced in the way the

current-voltage curves are measured and by the way the current cell model

mechanically stacks the cells.

Without a tunnel junction, the method of measuring overall cell output

power is not straightforward. For each junction, current-voltage solution points

are chosen based on percentages of the short-circuit current of that junction.

The detail level of these points is significantly higher around the knee of the

curve in order to gain a more detailed current-voltage curve for the junction.

However, for the lower junctions of the cell, this may not correspond to the

operating point when limited by the current of the top junction of the cell. Once

the current voltage curves for each junction have been obtained, a MATLABTM

code segment titled mj_ivmaxp.m calculates a max power for the cell. Since the

current of all junctions is limited by the junction which produces the least current,

the majority of layers will not be operating at their maximum power point at which

the current cell models were designed to give the greatest amount of detail.

Instead, the routine takes the data available and conducts linear interpolation

between points as needed to find a junction layer’s performance at the correct

operating current. The lack of detail in measurement at this current level

combined with the linear interpolation may introduce significant error and loss of

detail. When comparing cell performance on the levels of hundredths of a

percent, this level of detail is important. Figure 25 shows the four individual

junction layer IV curves on a single plot. The IV curves are shown and

superimposed with the individual data points on which the curve was fitted. In

the case of this cell, the InGaP layer would have the limiting current. It is notable

that the other three curves do not have any measured points at that current level.

 53

Figure 25. Highlighted Measurement Points for Individual Junction Layers

The accomplishment of a working tunnel junction model in Silvaco’s

software could greatly benefit this optimization work. First, the tunnel junction

would allow the software to simply measure the total cell output when subjected

to light without regard to the individual junction layer contributions. This would

reduce the complexity of evaluating the output power and allow better integration

into a fitness function to enable genetic algorithm optimization. Second, the

properties of the tunnel junction itself could be optimized to give the best total

output power for the multi-junction cell.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

V. CONCLUSIONS

In this thesis research, a coarse sampling/gradient ascent algorithm and

extended genetic algorithm were used to test the validity of Bates’ optimization

approach. The results of applying the coarse sampling/gradient ascent algorithm

did not yield any improved power output for cells. The extended genetic

algorithm runs with 50 generations and increased mutation rates consistently

produced improved results. Thus, the results of this experiment provide

confirming evidence for the hypothesis that the procedure used by Bates

produces optimal power output values better than those produced by applying

the coarse sampling/gradient ascent method and at a fraction of the computation

time. However, Bates’ GA settings were found to be incorrectly tuned for the

extended GA runs. With increased mutation rate and extending to 50

generations, incremental improvement in cell output power was obtained for

almost every cell configuration but with diminishing returns on computational time

and resources.

The entire multi-junction solar cell was modeled using a real-valued GA

implementation. The results from exercising the model were inconclusive due to

identical power values derived from different cell configurations; the root cause

needs to be investigated. One step that may help in the investigation is to

develop a working model of the tunnel junction in Silvaco ATLASTM, allowing for

the direct measurement of multi-junction cell output without the need to either

conduct interpolation with the attendant problem of introducing approximation

errors. A more computation-intensive method would be to run the iterative

current matching routine on a multi-junction cell while using a 50 or more

generation genetic algorithm to optimize individual junction performance at each

target thickness level.

The developers and maintainers of LAM MPI have pooled their efforts with

other MPI projects to create a new distributed processing environment called

Open MPI. Open MPI combines the best features of the various MPI

 56

implementations. Adaptation of the distributed computing code used in this

thesis to this new system would likely not be that difficult. The benefit of doing so

would be to have a more robust system on which to run experiments. Another

method of distributing the work would be to develop the experimental apparatus

in the new MATLABTM Distributed Computing Engine and Toolbox, leveraging its

ease of use, pre-built functions and tutorials, and compatibility with Windows.

Some additional avenues for further research are reviewing material

property parameters and tuning the model for working under realistic operational

parameters for space. Michalopoulos and Green each conducted a literature

search for experimental data on the materials used in these multi-junction solar

cells. Since many of the materials are fairly new in solar cells, there needs to be

periodic reviews for updated data in order to improve the accuracy and

performance of cell models within the Silvaco software. The users of Silvaco

models have the ability to change environmental constraints such as

temperature. Modification of the models to more closely resemble actual

operating conditions (e.g., the more extreme thermal cycling in space over an

extended period of time) would improve the utility of the models and provide

more data for verification against documented power output levels.

 57

APPENDIX A DETAILED REVIEW OF AN INPUT DECK

For the sake of brevity, a single junction GaAs input deck is used for this

illustration. The first command tells DeckBuildTM that it will need to use the

ATLASTM device simulator for this simulation.
go atlas

The next section does not actually build the model. Instead, it is merely

defining variables to be used later in the simulation. The variables from

windowThick down through bsfDop are the variables which were optimized as

discussed earlier in this thesis. In reading, note that actual values are simply

written but any references to a previously defined variable include a dollar sign

($) at the beginning of the referenced variable name.

go atlas
set cellWidth=500
set capWidthpercent=8
set divs=10
set contThick=0.1
set capThick=0.3
set capDop=1e20

The following 8 lines are the variables being optimized.
set windowThick=0.01
set winDop=2.15e17
set emitterThick=0.01
set emitDop=1e16
set baseThick=3.19467
set baseDop=1e16
set bsfThick=0.03533
set bsfDop=2.15e19
This is the end of variables being optimized.

set cellWidthDiv=$cellWidth/$divs
set width3d=100e6/$cellWidth
set capWidth=0.01*$capWidthpercent*$cellWidth/2
set capWidthDiv=$capWidth/($divs/2)
set cellWidthHalf=$cellWidth/2
set bsfLo=0
set bsfHi=$bsfLo-$bsfThick
set bsfDiv=$bsfThick/$divs
set baseLo=$bsfHi
set baseHi=$baseLo-$baseThick
set baseMid=$baseLo-$baseThick/2
set baseDiv=$baseThick/$divs
set emitterLo=$baseHi
set emitterHi=$emitterLo-$emitterThick
set emitterDiv=$emitterThick/$divs
set windowLo=$emitterHi

 58

set windowHi=$windowLo-$windowThick
set windowDiv=$windowThick/$divs
set capLo=$windowHi
set capHi=$capLo-$capThick
set contLo=$capHi
set contHi=$contLo-$contThick
set contDiv=$contThick/$divs
set lightY=$emitterHi-5

As described, a virtual mesh is defined throughout the volume of the

device to be simulated. Every intersection between mesh lines is where

differential equations are applied to determine device performance. Therefore,

the specification of the mesh is tuned to the type of device being simulated. The

mesh is much more fine around the intersection between cell layers and in

regions where the majority of electrical activity takes place. Seemingly minor

changes in the mesh can cause large changes in output values and even cause

simulations to fail. For readability, ATLASTM uses the # character to denote

comments. On some lines, a double “##” operator is used. This is purely

programmer discretion and done to denote section headings for readability. As

long as there is a single #, the DeckBuildTM application will ignore the text for the

rest of the line.
mesh width=$width3d
X-Mesh
x.mesh loc=-$cellWidthHalf spac=$cellWidthDiv
x.mesh loc=-$capWidth spac=$capWidthDiv
x.mesh loc=$capWidth spac=$capWidthDiv
x.mesh loc=$cellWidthHalf spac=$cellWidthDiv
Y-Mesh
Top contact
y.mesh loc=$contHi spac=0
y.mesh loc=$contLo spac=0
Cap
Window
y.mesh loc=$windowHi spac=$windowDiv
y.mesh loc=$windowLo spac=$windowDiv
Emitter
y.mesh loc=$emitterLo spac=$emitterDiv
Base
y.mesh loc=$baseMid spac=$baseDiv
BSF
y.mesh loc=$bsfHi spac=$bsfDiv
y.mesh loc=$bsfLo spac=$bsfDiv

The following section begins to define the actual structure of the cell.

Each line defines a type of material to be used as well as the position and

 59

dimensions of the region within the cell. Some comments are included to show

how to adapt the input deck to simulate different types of cells.
######################################
CURRENTLY SET UP FOR: GaAs CELL ##
######################################
Regions [for InGaP cell, change region 1 to GaAs (v. Vacuum)
and remove region 8 (bogus contact)]
[for all others, change materials only]
Cap
region num=8 material=Vacuum x.min=-$capWidth x.max=$capWidth y.min=$contHi
y.max=$contLo
region num=1 material=Vacuum x.min=-$capWidth x.max=$capWidth y.min=$capHi
y.max=$capLo
region num=2 material=Vacuum x.min=-$cellWidthHalf x.max=-$capWidth
y.min=$contHi y.max=$capLo
region num=3 material=Vacuum x.min=$capWidth x.max=$cellWidthHalf y.min=$contHi
y.max=$capLo
Window [for Ge cell, use AlGaAs with x.comp=0.2]
region num=4 material=InGaP x.min=-$cellWidthHalf x.max=$cellWidthHalf
y.min=$windowHi y.max=$windowLo
Emitter
region num=5 material=GaAs x.min=-$cellWidthHalf x.max=$cellWidthHalf
y.min=$emitterHi y.max=$emitterLo
Base
region num=6 material=GaAs x.min=-$cellWidthHalf x.max=$cellWidthHalf
y.min=$baseHi y.max=$baseLo
BSF
region num=7 material=InGaP x.min=-$cellWidthHalf x.max=$cellWidthHalf
y.min=$bsfHi y.max=$bsfLo
Electrodes [for InGaP cell, add cathode (gold) and remove
cathode(conductor)]
#electrode name=cathode material=Gold x.min=-$capWidth x.max=$capWidth
y.min=$contHi y.max=$contLo
electrode name=cathode x.min=-$cellWidthHalf x.max=$cellWidthHalf
y.min=$windowHi y.max=$windowHi
electrode name=anode x.min=-$cellWidthHalf x.max=$cellWidthHalf y.min=$bsfLo
y.max=$bsfLo

The next section outlines the doping to be used for each region. All the

concentrations are based on variables defined at the beginning of the input deck.
Doping [for InGaP cell, uncomment cap doping]
Cap
#doping uniform region=1 n.type conc=$capDop
Window
doping uniform region=4 n.type conc=$winDop
Emitter
doping uniform region=5 n.type conc=$emitDop
Base
doping uniform region=6 p.type conc=$baseDop
BSF
doping uniform region=7 p.type conc=$bsfDop

The following section defines the actual material properties for the various

materials used in the cell. Silvaco has built-in libraries for a large number of

 60

materials. However, many of the materials used in solar cell fabrication are rare

and not frequently used in the semiconductor devices commonly modeled in the

Silvaco TCAD suite. When the properties are not specifically defined or in the

software library, ATLASTM will revert to default values. When this happens,

results are drastically affected. The materials are explicitly defined to avoid this

predicament. The values used are based on previous research conducted at

NPS [Refs. 10,11]. The numbers are partly from published literature and partly

from calculation based on reasonable assumptions. Although solar cell

manufacturers probably have more detailed and tested data, it is of commercial

value to them to protect it as proprietary information. Therefore, it is worth

periodic review and validation to adjust the accuracy of these numbers. The \

operator seen at the end of some lines is instructs ATLASTM that the following

line belongs with the current line but has been separated for readability

purposes. All files referenced need to be with the input deck in the default

working directory for the simulation to proceed without error.
Material properties
Opaque contact [comment out for InGaP cell]
material region=8 real.index=1.2 imag.index=1.8
Vacuum (for zero reflection) [change to match window material (InGaP use
Vacuum_AlInP)]
[for InGaP cell, comment out region 1]
material region=1 index.file=Vacuum_InGaP.opt
material region=2 index.file=Vacuum_InGaP.opt
material region=3 index.file=Vacuum_InGaP.opt
GaAs
material material=GaAs EG300=1.424 PERMITTIVITY=12.9 AFFINITY=4.07 \
 NC300=4.7E17 NV300=9E18 INDEX.FILE=GaAs.opt COPT=7.2E-10 \
 AUGN=5E-30 AUGP=1E-31
InGaP
material material=InGaP EG300=1.9 PERMITTIVITY=11.62 AFFINITY=4.16 \
 NC300=1.3E20 NV300=1.28E19 index.file=InGaP.opt COPT=1E-10 \
 MUN=4000 MUP=200 AUGN=3e-30 AUGP=3E-30
Ge
material material=Ge EG300=0.661 PERMITTIVITY=16.2 AFFINITY=4 \
 NC300=1E19 NV300=5E18 index.file=Ge.opt COPT=6.41E-14 \
 MUN=3900 MUP=1900 AUGN=1E-30 AUGP=1E-30
AlGaAs
material material=AlGaAs MUN=9000 MUP=100 INDEX.FILE=AlGaAs.opt
AlInP (=InAsP)
material material=InAsP EG300=2.4 PERMITTIVITY=11.7 AFFINITY=4.2 \
 NC300=1.08E20 NV300=1.28E19 index.file=AlInP.opt COPT=1.2E-10 \
 MUN=2291 MUP=142 AUGN=9E-31 AUGP=9E-31
AlInGaP (=InAlAsP)
material material=InAlAsP EG300=2.4 PERMITTIVITY=11.7 AFFINITY=4.2 \
 NC300=1.2E20 NV300=1.28E19 index.file=AlInP.opt COPT=1E-10 \
 MUN=2150 MUP=141 AUGN=3e-30 AUGP=3E-30

 61

InGaNAs
material material=InGaNAs EG300=1.0 PERMITTIVITY=11.7 AFFINITY=4.05 \
 NC300=3.2e19 NV300=1.8e19 index.file=InGaNAs.opt COPT=7.2e-10 \
 MUN=3000 MUP=150
Gold
material material=Gold real.index=1.2 imag.index=1.8

The following section allows the user to specify the mathematical models

to be applied to the various regions within the cell. CONMOB is a concentration

dependent electron mobility model for GaAs and Si [Ref. 9]. OPTR specifies the

band to band recombination model and print simply instructs ATLASTM to add the

recombination data to the log file generated at runtime [Ref. 9].
Models [InGaP cell, 1; GaAs cell, 5&6; InGaNAs cell, 7]
#models region=1 CONMOB
models region=5 CONMOB
models region=6 CONMOB
#models region=7 CONMOB
models OPTR print

The Light beams section is where the user may define what light

spectrum, intensity, and angle to shine on the solar cell. This feature allowed

Bates to optimize cell designs for the light spectrum in both earth orbit (AM0) and

on Mars [Ref. 7]. The struct command following the light beams defines a

structure file with all the physical setup information for the cell. The commented

out tonyplot command generates a graphical picture of the cell model.
Light beams
beam num=1 x.origin=0 y.origin=$lightY angle=90 back.refl \
 power.file=AM0nrel.spec \
 wavel.start=0.12 wavel.end=2.4 wavel.num=50
#struct outfile=SingleCell_webf.str
#tonyplot SingleCell_webf.str

The following section of the input deck begins the collection data. The first

section exposes the cell to light and then extracts the short circuit current from

the data file. Various current values along the expected current-voltage curve

are then calculated and defined based on fractions of the short circuit current.
solve init
method gummel newton maxtraps=10 itlimit=25
solve b1=0.9
log outfile=CHR10485774.log
solve b1=0.95
log off
extract init infile="CHR10485774.log"
extract name="isc" max(i."cathode")

 62

set isc=$isc*$width3d
set isc=$isc
set i1=$isc/10
set i2=$i1+$isc/10
set i3=$i2+$isc/10
set i4=$i3+$isc/10
set i5=$i4+$isc/10
set i6=$i5+$isc/20
set i7=$i6+$isc/20
set i8=$i7+$isc/20
set i9=$i8+$isc/20
set i10=$i9+$isc/20
set i11=$i10+$isc/40
set i12=$i11+$isc/40
set i13=$i12+$isc/40
set i14=$i13+$isc/40
set i15=$i14+$isc/40
set i16=$i15+$isc/80
set i17=$i16+$isc/80
set i18=$i17+$isc/80
set i19=$i18+$isc/80
set i20=$i19+$isc/80
set i21=$i20+$isc/80
set i22=$i21+$isc/80
set i23=$i22+$isc/80
set i24=$i23+$isc/80
set i25=$i24+$isc/80-0.00001

The final code section is where the actual IV curve measurements are

made based on the current values defined in the previous section. Per the

comments, solve points are tailored to expected max power ranges for each type

of cell in order to minimize computation time. The final lines close out the log file

and create a done signal for MATLABTM. The commented tonyplot command, if

uncommented, generates a graphical IV curve plot based on simulation results.
log outfile=CHR10485774.log
method newton maxtraps=10 itlimit=100
solve b1=0.95
contact name=anode current
method newton maxtraps=10 itlimit=100
Pmax points [InGaP 18-25; GaAs 15-25; InGaNAs 13-25; Ge 11-25]
solve ianode=-$i25 b1=0.95
solve ianode=-$i24 b1=0.95
solve ianode=-$i23 b1=0.95
solve ianode=-$i22 b1=0.95
solve ianode=-$i21 b1=0.95
solve ianode=-$i20 b1=0.95
solve ianode=-$i19 b1=0.95
solve ianode=-$i18 b1=0.95
solve ianode=-$i17 b1=0.95
solve ianode=-$i16 b1=0.95
solve ianode=-$i15 b1=0.95
solve ianode=-$i14 b1=0.95
solve ianode=-$i13 b1=0.95
solve ianode=-$i12 b1=0.95
solve ianode=-$i11 b1=0.95

 63

##now solve for Voc
solve ianode=0 b1=0.95
log off
Full I-V curve plot
#tonyplot SingleCell_webf.log -set pmax.set

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX B: CHALLENGES IN ADAPTING WINDOWS
ATLASTM INPUT DECKS TO ATLASTM UNDER UNIX

While all previous research had been conducted using Silvaco ATLASTM

and MATLABTM under the Windows operating system, running the same input

decks under ATLASTM running on the Linux operating system proved initially

challenging. In fact, the input decks for Windows using DeckBuildTM will not

execute correctly under Linux without modification.

The first problem encountered was that the simulation runs would fail with

a variety of odd errors reported. Upon consultation with Silvaco engineers, the

problem was identified as a text formatting difference between Windows and

Linux. Since the input decks of initial simulation attempts were based on copying

text from a previous thesis and pasting in a text editor in Windows, some odd

characters were introduced. Later, when Bates original files were obtained, they

simulated without this problem. Fortunately, Linux has a built-in utility for

correcting this problem. The utility, dos2unix, is run from the command prompt in

a terminal window. Although it has many options and capabilities, the defaults

worked correctly in this situation. As an example, consider the Windows file

Chr0.in which requires conversion. The user first moves into the Linux directory

in which the file is located and executes the following command:

Prompt> dos2unix ./CHR0.in <return>
The next problem encountered was a difference in how the results of

computation are automatically stored and referenced using Silvaco tools under

Windows and Linux. The solve portion of an input deck first solves for short

circuit current, extracts this value, and then sets up all the current-voltage curve

points to solve for based on fractions of the short circuit current. Under

Windows, values are automatically saved to a file and then that file is

automatically referenced for extraction. Under Linux, this log file must first be

explicitly established before solving for the current, and then closed before being

referenced. The extract init statement must be told the log file’s name. In

 66

addition, the current value extracted under Windows is only for 1/200000th of the

mesh and must be multiplied. Under Linux, the value extracted is the current for

the entire cell and thus does not need to be multiplied by the mesh size. When

the original input deck was run, a pop up window gave the following

announcement: “** INFORMATION ** Monitor String from selected list detected.

The simulation has been stopped.” In the log file from the simulation, the

following comments were recorded before the simulation halted:
Warning: 'set' syntax not recognized.
Deckbuild passing ‘set' command to simulator.
set isc=*200000
 ** ERROR # 1 **
 * Invalid card type specification *
 ==> set

Below are sample sections of input decks. The Linux version has been

adjusted to simulate correctly.

solve init
method gummel newton maxtraps=10 itlimit=25
solve b1=0.9

Getting Isc for I-V curve points
method newton maxtraps=10 itlimit=100
solve b1=0.95
extract name="isc" max(i."cathode")
set isc=$isc*$width3d
set i1=$isc/10
set i2=$i1+$isc/10

solve init
method gummel newton maxtraps=10 itlimit=25
solve b1=0.9
log outfile=CHR4294967295.log
solve b1=0.95
log off
extract init infile="CHR4294967295.log"
extract name="isc" max(i."cathode")
set isc=$isc*$width3d
set isc=$isc
set i1=$isc/10
set i2=$i1+$isc/10

Table 6. Sample Extraction code under Windows (Left) and Linux (Right)

Upon successful execution of an adapted Windows input deck under

Linux, cell output data was compared. Although current-voltage curves were

similar, they were not identical. Upon inspection of the log files automatically

generated by ATLASTM, the following differences were observed:

ATLAS> solve init
CONSTANTS:
 Boltzmann's constant = 1.38066e-023 J/K
 Elementary charge = 1.6023e-019 C
 Permitivity in vacuum = 8.85418e-014 F/cm

ATLAS> solve init
CONSTANTS:
 Boltzmann's constant = 1.38066e-23 J/K
 Elementary charge = 1.60219e-19 C
 Permitivity in vacuum = 8.85419e-14 F/cm

 67

 Temperature = 300 K
 Thermal voltage = 0.0258502 V

 Temperature = 300 K
 Thermal voltage = 0.025852 V

Table 7. Scientific Constants used by ATLASTM under Windows (Left) and

Linux (Right)

To ensure results are consistent with previous work, ten input decks were

run using the original Windows format and under Linux using the adaptation

described above. The output values obtained under Windows and Linux were

then compared. The input decks chosen were a wide range intended to ensure

every variable has at least one parameter change. In the plot below, nine of the

chromosome pairs’ iv plots are displayed. One chromosome had an order of

magnitude lower power and is not shown on this plot.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

Voltage(V)

C
ur

re
nt

(A
)

I-V Characteristic for 9 Chromosomes under Linux and Windows

Figure 26. Comparison of IV characteristics obtained under Windows and Linux

When plotted individually, it is easy to see that each pair (Windows and

Linux for the same chromosome) follow almost exactly the same plot.

MATLABTM analysis revealed that the largest percentage difference in obtained

 68

power values was around 5% - and this difference was observed on only 5 out of

150 current voltage points. The majority were less than one percent. Both

methods produced the same ranking of chromosomes according to maximum

power. It is clear that both versions of input decks are effectively defining the cell

configuration and obtaining results. In addition, the absolute value of the results

obtained is reasonably close.

Engineers at Silvaco have explained the discrepancy by noting that there

are differences in the way Windows and Linux handle floating point number

formats and arithmetic. Their recommendation was that if the absolute value of

the number is critical (as opposed to the relative ranking) then the Linux or Unix

generated values are likely more accurate.

 69

APPENDIX C: DISTRIBUTED COMPUTING PROGRAMMER’S
NOTES

Before starting this thesis work, the author had two undergraduate

programming classes (one in ADA, the other in C) and one graduate class with

simplistic C programs. The majority of software problems encountered were

easily solved with a fairly basic set of programming skills. The LAM-MPI web site

had a very thorough self paced class on the basics of programming for LAM-MPI

distributed computing. In addition, the leaders of LAM-MPI along with other MPI

projects have now consolidated their efforts to build Open MPI which was coded

from scratch to incorporate the best of all the MPI projects. Exact duplication of

the methods used are not likely to work on other platforms and might not be

advisable even if they did. When originally conceived and coded, the software

used for this thesis had many provisions for capabilities which, at the time, were

thought to be useful to this research. The test of time has shown that simple is

better, and re-coding of significant portions has been undertaken just to make the

code simpler and easier to maintain. The code base has gone through several

generations as the research progressed. The coarse sampling, gradient, remote

genetic algorithm, and remote real-valued multi-junction optimization all required

adjustments and changes to the code. As such, the goal of this appendix is not

to disclose at length all the code used, but simply to highlight a couple of the

more difficult challenges in developing the distributed computing software.

The first major obstacle was that Silvaco ATLASTM does not always give

predictable results. When Bates used MATLABTM to make system calls to run

ATLASTM, ATLASTM crashes or unexpected results would often cause the

MATLABTM code to halt or crash when it tried to deal with the problems. Upon

further investigation, updated versions of Windows and MATLABTM had a slightly

different system call function. In previous versions the system call would return

to MATLABTM some information as to the status of the system call. Bates then

had MATLABTM sit in a waiting loop looking for a file called done.log. The last

 70

item of his ATLASTM input deck instructed ATLASTM to create an empty log file

called done.log. However, ATLASTM doesn’t always complete a simulation run.

Bad data or a corrupted input deck can cause the simulation to fail. The changes

in system calls made this situation difficult to detect from the MATLABTM

environment. In the course of this thesis, no method of checking up on the

simulations was found within the MATLABTM environment.

Since the distributed computing platform used in this thesis was running

on LAM-MPI on the Linux operating system, other methods of process

supervision were available. The client process, when instructed to conduct a

simulation, would utilize the C fork and execl commands to accomplish process

supervision. This implementation is well articulated in the documentation header

for the code below:
/*
 * Created on Oct 11, 2004 4:02:33 PM
*/
/*
 * MPI based Solar Cell Simulation
 *
 *
 * Created: 11 Oct 2004
 * Last Modified: 18 Nov 2005
 * Author: James Utsler
 *

 * mpi_solar_atlas_call.c contains the source code for calling atlas
 * to act on a specified input file or "deck" under the silvaco TCAD
 * tools. With minor modification, this may be used to call a
 * different application. The general concept is the need to call
 * atlas but also monitor
 * the "atlas call" in case it freezes, hangs, or crashes in some way.
 * To accomplish this, the unix fork and execl commands are used to
 * fork program execution and then have the child program call atlas.
 * The parent monitors the child process by looking at the child
 * process's status file which is located in the /proc/procid#/status
 * file, where procid# is replaced by the actual process id of the
 * child. A specific position in the status file gives the state of
 * execution. This program only checks if the character is a Z which
 * denotes zombie status. Zombie status means that the child has
 * completed execution and is waiting for the parent to "reap" them.
 * If in this condition, the parent "reaps" the child and then returns
 * to the calling program stating successful execution. If the child
 * process is not in the zombie state, the parent goes to sleep for a
 * specified period of time, wakes up, and checks the childs status
 * again. This continues until a "timed-out" threshold is met. The
 * interval between checks and timed-out threshold are specified in

 71

 * the call to this program.
 *
 * Inputs:
 * chromosome - specifies what chromosome to call atlas on, this
 * program uses chromosome to build the input filename and log
 * filename for the atlas call
 * how_long_to_wait - specifies the length of time the parent
 * process waits before "killing" the child and reporting faulty
 * execution (time in seconds)
 * how_long_between_checks - specifies how long the parent sleeps
 * between checks on the child (time is in seconds) before
 * calling this program, the master program has already written
 * the input file which corresponds to this chromosome
 *
 * Returns:
 * 0 with successful execution.
 * 1 with timed-out or a faulty system call
 *
 */

#include <stdio.h>
#include <unistd.h>

int supervised_atlas_call(unsigned long int chromosome,
 int how_long_to_wait,
int how_long_between_checks)
{

 int pid;

 FILE *process_status_file;
 int i=0;
 int return_value;
 char chromstr[20];
 char cmdstr[40]="kill -TERM \0";
 char pidstr[10];
 char tempstr[50]="/proc/\0";

 char status;

 printf("Simulating Chrom %lu\n",chromosome);
 pid=fork();

 if (pid!=0) {
 /*printf("Parent:child's pid=%d\n",pid);*/
 sprintf(cmdstr,"kill -TERM %i\0",pid); /* this builds the kill
 signal command string */
 sprintf(pidstr,"%lu\0",pid);

 sprintf(tempstr,"/proc/%lu/status\0",pid);

 while (1) {
 sleep(how_long_between_checks);
 i=i+how_long_between_checks; /* increment time counter */
 process_status_file=fopen(tempstr,"r"); /* open the status

 72

 file */

 if (process_status_file!=NULL) { /* if the file was
 "Openable" */
 fscanf(process_status_file,"%*s %*s\n%*s %c",&status);
 /* pick out the status letter */

 /*printf("Parent:child status= %c\n",status);*/
 fclose(process_status_file); /* close the file */
 }
 else break; /* exit the loop if file was not accessible */
 if (status=='Z') { /* exit the loop if the child completed
 processing */
 return_value=0; /* it would have status Z -> Zombie */
 wait(pid);
 break;
 }

 if (i>how_long_to_wait) { /* kill child if time is over
 user defined seconds per loop */
 /*printf("parent killing child\n");*/
 system(cmdstr);
 return_value=1;
 break;
 }
 /*printf("parent waiting time=%i\n",i);*/
 }
 /*printf("Parent:exiting now\n");*/
 }
 else {
 /*printf("Child executing program:my pid=%d\n",pid);*/
 sprintf(chromstr,"CHR%lu.in\0",chromosome);
 sprintf(tempstr,"CHR%lu.txt\0",chromosome);
 /*execl("/bin/ping","ping","-c","1","www.yahoo.com",0);*/
 execl("/opt/silvaco2/bin/deckbuild","deckbuild","-run",
 "-ascii",chromstr,"-outfile",tempstr,0);
 printf("Problem with Atlas child process call!\n"); /* this line
 should not be executed */
 return_value=1;
 }
 return return_value;
}

Once the above code completes, assuming a successful simulation, the

client program parses out the ATLASTM output file to ensure that sufficient data

was generated and then reports back as to the success of the simulation. If the

ATLASTM process fails or the data does not check out, the distributed system

monitor is notified and the failed simulation is noted in status files.

 73

Another concern with process completion is that the processors of the

distributed computing platform are located in a student lab. In some cases

students would reboot a computer if something went awry or occasionally shut

down a computer at the end of their work thinking it was an environmentally

appropriate step to conserve energy. LAM-MPI is not flexible on adding or

deleting nodes after the platform is initiated. In early software versions of this

application, this meant that the entire system might break down if the distributed

system monitor was blocked waiting to send or receive a message from one of

the clients. In latter versions of the software, a periodic check-in system was

used. Clients always default to sending a non-blocking message to the

distributed system monitor asking for work. If no work is available, the client is

simply told to check in at a later time. However, every time this occurs, the

distributed system monitor scrubs its records to see if any simulation has

exceeded a maximum time threshold. If this is the case, the simulation would be

assigned to another computer and the timed-out client would be black-listed so

that no further results would be accepted from that client. This also prevents the

case of two nodes reporting results for the same simulation.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

APPENDIX D: MATLABTM GENETIC ALGORITHM AND DIRECT
SEARCH TOOLBOX NOTES

Working within the Genetic Algorithm and Direct Search Toolbox made

modifying GA parameters significantly easier. It allowed the programmer to

focus more on the research being conducted. The GUI allows the easy

configuration of parameters and offers an option to generate a MATLABTM script

which will execute the parameters chosen without the GUI interface. For

consistency among multiple simulations, the scripts were used for the actual

simulations. The following code was used for the extended GA runs on single

junction cells:
function [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] = ga1
%% This is an auto generated M file to do optimization with the
Genetic Algorithm and
% Direct Search Toolbox. Use GAOPTIMSET for default GA options
structure.

generation=0;
save('generation.txt','generation','-ascii');
clear generation;

FID=fopen('path_list.txt','w');
fprintf(FID,'./Ge_320.00 25 11 4 320.00');
fclose(FID);

system('copy path_list.txt Z:');

%%Fitness function
fitnessFunction = @single_junction_remote_batch_fitness_function;
%%Number of Variables
nvars = 28;
%Linear inequality constraints
Aineq = [];
Bineq = [];
%Linear equality constraints
Aeq = [];
Beq = [];
%Bounds
LB = [];
UB = [];
%Nonlinear constraints
nonlconFunction = [];
%Start with default options
options = gaoptimset;
%%Modify some parameters
options = gaoptimset(options,'PopulationType' ,'bitString');

 76

options = gaoptimset(options,'PopulationSize' ,36);
options = gaoptimset(options,'Generations' ,50);
options = gaoptimset(options,'StallTimeLimit' ,Inf);
options = gaoptimset(options,'SelectionFcn' ,@selectionroulette);
options = gaoptimset(options,'CrossoverFcn' ,@crossovertwopoint);
options = gaoptimset(options,'MutationFcn' ,{ @mutationuniform 0.10 });
options = gaoptimset(options,'Display' ,'off');
options = gaoptimset(options,'PlotFcns' ,{ @gaplotbestf
@gaplotscorediversity });
options = gaoptimset(options,'Vectorized' ,'on');
%%Run GA
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =
ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFunction,opti
ons);

The following code is the fitness function used for single-junction extended

GA runs.
function
fitness_values=InGaP_single_junction_remote_batch_fitness_function(gene
ration_trait_vector)
%
% This function takes a matrix of trait values for each genetic
algorithm
% generation and acts as a liason between the genetic algorithm running
on
% a windows machine and a distributed computing system which will
handle
% all solar cell simulation. The communication is acheived using
simple
% status bit files and data files. When ready to simulate a
generation,
% this function will save the data in a formatted manner to the shared
file
% system of the distributed computing project. It will then set a file
% with a status bit indicating that the data is ready. The distributed
% system will then simulate all the data, archive the input and output
files,
% and then update a status file indicating that results are ready. The
% data will then be formatted for return to the MATLAB GA tool and this
% function will exit. It will be called again at the beginning of the
next
% iteration.
%
%
% clear

format long;

%% First convert the bit strings to chromosome numbers compatible with
% previously built GA/distributed computing code
%

 77

[number_chroms,chrom_bitlength]=size(generation_trait_vector)
FID=fopen('master_chromosome_list.txt','w');
chromosomes=[];
for i=1:number_chroms

chromosomes=[chromosomes;bits_to_traits(generation_trait_vector(i,:),28
)];
 fprintf(FID,'%d\n',chromosomes(i));
end
fclose(FID);

system('copy master_chromosome_list.txt Z:');

results_ready=0;
save('Z:\results_ready.txt','results_ready','-ascii');

chromosomes

%% Next, set the status bit to let the remote system know that the data
% file is ready for simulation.

sim_start=1;
save('Z:\simulation_data_ready.txt','sim_start','-ascii');

%% Now periodically check the status bit which indicates that
simulation is
% complete.

results_ready=0;
while results_ready==0
 results_ready=load('Z:\results_ready.txt');
end

%% Now create a directory to store the resulting log files
generation=load('generation.txt');
command=sprintf('copy Z:\\temp_result_matrix.txt
C:\\GenAlg\\Gen%d.txt',generation);
system(command);

command=sprintf('C:\\GenAlg\\Gen%d.txt',generation);
simulation_data=load(command)
fitness_values=sort_fitness_results(chromosomes,simulation_data);
generation=generation+1;
save('generation.txt','generation','-ascii');
system('erase Z:\temp_result_matrix.txt');
return

For single-junction optimization, the data validation was conducted within

the distributed computing system. When simulation runs were complete, a

summary file giving a line of information for each chromosome was passed back

 78

to MATLABTM. The following function was used to match up the returned data

file to the known chromosome list in MATLABTM to ensure that fitness values are

returned in the correct format.
function
ordered_fitness=sort_fitness_results(given_population,computed_results)
%
% When data comes back from a "vectorized" distributed computing
% simulation, there is the possibility that a specific chromosome
% would not simulate successfully. In this case, there will be no
% result entry coming back from the distributed computing setup for
% that specific chromosome. This function compares the result file to
% the actual population and ensures all fitness values correspond to
% the correct chromosomes. In the case where no result comes back, it
% is assigned the fitness value of 0.
%
%
given_elements=length(given_population);
result_elements=size(computed_results,1);
given_population(:,2)=1:given_elements;

given_population=sortrows(given_population,1);
computed_results=sortrows(computed_results,1);

result_placeholder=1;
ordered_fitness=[];
for i=1:given_elements
 updated=0;
 for j=1:result_elements
 if given_population(i,1)==computed_results(j,1)

ordered_fitness=[ordered_fitness;given_population(i,2),computed_results
(j,2)];
 updated=1;
 end
 end
 if updated==0
 ordered_fitness=[ordered_fitness;given_population(i,2),0];
 end
end
ordered_fitness=sortrows(ordered_fitness,1);
ordered_fitness=-ordered_fitness(:,2);

When conducting the real-valued optimization of multi-junction cells, the

author learned that not all features of the toolbox are fully implemented. When

using real-valued number representation of traits, the toolbox allows the user to

specify upper and lower bounds for trait values. In addition, both linear and

nonlinear constraints relating variables may be introduced. However, when

these options are used, the toolbox defaults to a condition in which it’s initial

 79

population is a single test chromosome. When complete, the second generation

consists of clones of the test chromosome with a few minor mutations. This

essentially usurps the genetic diversity which is key in a genetic algorithm based

optimization. Discussion with MATLABTM engineers confirmed that this will be

fixed in future versions and that there are ways to work around this problem. As

a simple fix, the method used in this thesis is to manually code in MATLABTM a

routine to build a random population within the upper and lower bound

constraints for each trait. The GA function of the toolbox is then called. The

following code was used:
function [X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =
ga2owncreate(population)
%% This is an auto generated M file to do optimization with the
Genetic Algorithm and
% Direct Search Toolbox. Use GAOPTIMSET for default GA options
structure.

generation=0;
save('generation.txt','generation','-ascii');
clear generation;
figure(1);

%%Fitness function
fitnessFunction = @quad_junction_remote_batch_fitness_function;
%%Number of Variables
nvars = 29;
%Linear inequality constraints
Aineq = [];
Bineq = [];
%Linear equality constraints
Aeq = [];
Beq = [];
%Bounds
% window emitter base bsf
ingaplb = [0 1e16 0 1e16 0 1e16 0 1e16];
% window emitter base bsf
ingapub = [10 1e20 10 1e20 10 1e20 10 1e20];
% window emitter base bsf
gaaslb = [0 1e16 0 1e16 0 1e16 0 1e16];
% window emitter base bsf
gaasub = [10 1e20 10 1e20 10 1e20 10 1e20];
% window emitter base bsf
inganaslb = [0 1e16 0 1e16 0 1e16 0 1e16];
% window emitter base bsf
inganasub = [10 1e20 10 1e20 10 1e20 10 1e20];
% window emitter base

 80

gelb = [0 1e16 0 1e16 1e16];
% window emitter base
geub = [10 1e20 10 1e20 1e20];

LB=[ingaplb gaaslb inganaslb gelb];
UB=[ingapub gaasub inganasub geub];

% now create the initial population by multiplying a matrix of random
% variables by a scale factor matrix (the difference in upper and lower
% bounds) and then adding the lower bound to the scaled values

popsize=90;
population=rand(popsize,nvars);
scalar_factor=UB-LB;
for i=1:popsize
 population(i,:)=scalar_factor.*population(i,:);
 population(i,:)=LB+population(i,:);
end

drews_data=load('drews_data.txt')
population=[drews_data;drews_data;drews_data;population(7:popsize,:)]
% LB=[];
% UB =[];
%Nonlinear constraints
nonlconFunction = [];
%Start with default options
options = gaoptimset;
%%Modify some parameters
options = gaoptimset(options,'InitialPop' ,population);
options = gaoptimset(options,'PopulationSize' ,popsize);
options = gaoptimset(options,'Generations' ,Inf);
options = gaoptimset(options,'StallGenLimit' ,100);
options = gaoptimset(options,'StallTimeLimit' ,Inf);
options = gaoptimset(options,'TolFun' ,0);
options = gaoptimset(options,'TolCon' ,0);
options = gaoptimset(options,'SelectionFcn' ,@selectionroulette);
options = gaoptimset(options,'CrossoverFcn' ,@crossovertwopoint);
options = gaoptimset(options,'MutationFcn' ,{ @mutationadaptfeasible
0.01 });
options = gaoptimset(options,'Display' ,'off');
options = gaoptimset(options,'PlotFcns' ,{ @gaplotbestf
@gaplotscorediversity });
options = gaoptimset(options,'Vectorized' ,'on');
%%Run GA
[X,FVAL,REASON,OUTPUT,POPULATION,SCORES] =
ga(fitnessFunction,nvars,Aineq,Bineq,Aeq,Beq,LB,UB,nonlconFunction,opti
ons);

The following code is the fitness function used for real-valued multi-

junction optimization:

 81

function
fitness_values=quad_junction_remote_batch_fitness_function(generation_t
rait_vector)
%
% This function takes a matrix of trait values for each genetic
% algorithm generation and acts as a liason between the genetic
% algorithm running on a windows machine and a distributed computing
% system which will handle all solar cell simulation. The
% communication is acheived using simple status bit files and data
% files. When ready to simulate a generation, this function will save
% the data in a formatted manner to the shared file system of the
% distributed computing project. It will then set a file with a status
% bit indicating that the data is ready. The distributed system will
% then simulate all the data, archive the input and output files, and
% then update a status file indicating that results are ready. The
% data will then be formatted for return to the MATLAB GA tool and this
% function will exit. It will be called again at the beginning of the
% next iteration.
%
%

format long;
%generation_size=36;
%% First save the data to a file for further simulation. The file's
% format will be a chromosome number corresponding to the row in the
% trait matrix by the actual traits listed in order.
%
status_list=[1:size(generation_trait_vector,1)]'
%data_file=[chrom_numbers,generation_trait_vector]
generation_trait_vector

results_ready=0;
save('Z:\results_ready.txt','results_ready','-ascii');

save('Z:\generation_trait_data.txt','generation_trait_vector','-
ascii');
%save('C:\GenAlgeration_trait_data.txt','generation_trait_vector','-
ascii');

FID=fopen('master_chromosome_list.txt','w');
for i=1:size(generation_trait_vector,1)
 fprintf(FID,'%d\n',i);
end
fclose(FID);

system('copy master_chromosome_list.txt Z:');

%% Next, set the status bit to let the remote system know that the data
% file is ready for simulation.

 82

sim_start=1;
save('Z:\simulation_data_ready.txt','sim_start','-ascii');

%% Now periodically check the status bit which indicates that
% simulation is complete.
generation=load('generation.txt');

%% Now create a directory to store the resulting log files

command=sprintf('mkdir C:\\GenAlg\\Gen%d',generation);
system(command);

results_ready=0;
while results_ready==0
 results_ready=load('Z:\results_ready.txt');
 command=sprintf('move Z:\\GenDataGood*.*
C:\\GenAlg\\Gen%d',generation);
 system(command);
 command=sprintf('move Z:\\GenDataBad*.*
C:\\GenAlg\\Gen%d',generation);
 system(command);
end

status_list=analyze_simulation_success(status_list)

system('erase Z:\completed_chromosome_logbak.txt');
system('erase Z:\chromosome_error_logbak.txt');

%% Now create a directory to store the resulting log files

command=sprintf('move Z:\\GenDataBad*.*
C:\\GenAlg\\Gen%d',generation);
system(command);
command=sprintf('move Z:\\GenDataGood*.*
C:\\GenAlg\\Gen%d',generation);
system(command);
command=sprintf('move Z:\\completed_chromosome_log.txt
C:\\GenAlg\\Gen%d',generation);
system(command);
command=sprintf('move Z:\\chromosome_error_log.txt
C:\\GenAlg\\Gen%d',generation);
system(command);
command=sprintf('move Z:\\generation_trait_data.txt
C:\\GenAlg\\Gen%d',generation);
system(command);

%% The following loop copies a log file to a local drive, calls a
% function to determine the cell's max power value, and then stores the
% result in a matrix listing chromosome numbers and the max power
% (fitness value). Since MATLAB's GA Tool minimizes functions, the
% negative of the max power is stored.

 83

save

for chrom=1:size(status_list,1)
 if status_list(chrom,2)==1
 filename=sprintf('C:\\GenAlg\\Gen%d\\CHR%d',generation,chrom);
 [isctot,voctot,imptot,vmptot,pmaxtot,fftot]=mj_ivmaxp(filename)
 status_list(chrom,3)=-pmaxtot;
 end
end

fitness_values=status_list(:,3)

%% Now format the data for return to the MATLAB genetic algorithm tool.
generation=generation+1;
save('generation.txt','generation','-ascii');
return

For multi-junction result interpretation, the raw data files were subjected to

a data validation within the distributed computing system to ensure a simulation

had completed. For output power calculation, the result files were interpreted

from within MATLABTM using a routine developed by Max Green in his thesis

work. The following code was used:
function
[isctot,voctot,imptot,vmptot,pmaxtot,fftot]=mj_ivmaxp(runinfile)

format long;

datacol=textread([runinfile '.log'],'%*s%u%*[^\n]','headerlines',18);

numelect=datacol(1);
cols=datacol(2);

beams=mod(cols-4,numelect*3)+1;

beamstuff=[];
for i=1:beams
 beamstuff=[beamstuff '%*f'];
end

trodestuff=['%*f%*f%f%f%*f%*f']; pwredge=0; badpmax=0;
for i=1:(numelect/2)
 [Io(:,i) Vo(:,i)]=textread([runinfile '.log'],['%*s' beamstuff
'%*f%*f%*f' trodestuff '%*[^\n]'], ...
 'headerlines',20);
 trodestuff=['%*f%*f%*f%*f%*f%*f' trodestuff];
 Po(:,i)=Io(:,i).*Vo(:,i);
 isc(i)=max(Io(:,i));
 [mincurrent indx]=min(Io(:,i));
 voc(i)=Vo(indx,i);

 84

 [Pmax(i) indx]=max(Po(:,i));
 while Vo(indx,i)>Vo(indx+1,i)
 disp(['*** SUSPICIOUS PMAX' num2str(i) '=' num2str(Pmax(i)) '
DROPPED ***']);
 [Pmax(i) addon]=max(Po((indx+1):max(size(Po(:,i))),i));
 indx=indx+addon;
 badpmax=1;
 end
 if indx==2
 pwredge=1;
 disp(['*** INCOMPLETE LOWER BOUNDING OF PMAX' num2str(i) '
***']);
 numboundprob=numboundprob+1;
 elseif indx==(max(size(Po(:,i)))-1)
 pwredge=2;
 disp(['*** INCOMPLETE UPPER BOUNDING OF PMAX' num2str(i) '
***']);
 numboundprob=numboundprob+1;
 end
 FF(i)=Pmax(i)/(isc(i)*voc(i));
 imp(i)=Io(indx,i);
 vmp(i)=Vo(indx,i);
end

[pmaxtot,imptot,itotal,vtotal]=maxpower(Io,Vo,imp,isc,voc,numelect);

isctot=max(itotal);
voctot=max(vtotal);
vmptot=pmaxtot/imptot;
fftot=pmaxtot/(isctot*voctot);
Vtotmax=vtotal;
Iomax=Io;
Itotmax=itotal;

pmaxline=imptot*ones(size(vtotal));
xlim=1.1*max(vtotal);
ylim=1.1*max(isc);
figure(2);

if (numelect/2)==4

plot(Vo(:,1),Io(:,1),'b',Vo(:,2),Io(:,2),'r',Vo(:,3),Io(:,3),'g',...
 Vo(:,4),Io(:,4),'k',vtotal,itotal,'m',vtotal,pmaxline,'c:');
 legend('InGap','GaAs','InGaNAs','Ge','Total Cell',...
 ['Pmax= ' num2str(pmaxtot*1000) 'mW'],0);
elseif (numelect/2)==3

plot(Vo(:,1),Io(:,1),'b',Vo(:,2),Io(:,2),'r',Vo(:,3),Io(:,3),'g',...
 vtotal,itotal,'m',vtotal,pmaxline,'c:');
 legend('InGap','GaAs','Ge','Total Cell',...
 ['Pmax= ' num2str(pmaxtot*1000) 'mW'],0);
end

xlabel('Voltage (V)');

 85

ylabel('Current (A)');
axis([0 xlim 0 ylim]);
figure(1);

The preceeding function relies on another power interpretation routine

also developed by previous researchers at NPS. That routine follows:

function
[maxp,imaxp,itotal,vtotal]=maxpower(Io,Vo,imp,isc,voc,numelect)

% add up powers of each cell at lowest isc down to lowest imp
% record max power and overall imp

itry=linspace(min(imp),min(isc),10);
itry=[linspace(min(imp)*0.6,min(imp),10) itry];

% Io=known y's (decreasing)
% Vo=known x's (increasing)
% itry=given y's
% vtgt=target x's

istart(1)=2;
for i=1:(numelect/2)-1
 for j=istart(i):max(size(Io(:,i)))
 if Io(j,i)<0.00001
 istart(i+1)=j+1;
 break;
 end
 end
end
istart((numelect/2)+1)=max(size(Io(:,1)))+1;

for j=1:max(size(itry))
 maxpwr(j)=0;
 vtotal(j)=0;
 for i=1:(numelect/2)
 pivot=0;
 for x=istart(i):(istart(i+1)-1)
 if Io(x,i)<itry(j)
 pivot=x;
 if pivot==istart(i)
 pivot=istart(i)+1;
 end
 end
 if pivot
 break;
 end
 end
 if ~pivot
 pivot=istart(i+1)-1;
 end
 linterp=(Io(pivot,i)-itry(j))/(Io(pivot,i)-Io(pivot-1,i));

 86

 vtgt=Vo(pivot,i)-((Vo(pivot,i)-Vo(pivot-1,i))*linterp);
 vtotal(j)=vtotal(j)+vtgt;
 maxpwr(j)=maxpwr(j)+(itry(j)*vtgt);
 end
end

itotal=[0 itry min(isc)];
vtotal=[sum(voc) vtotal 0];
[maxp indx]=max(maxpwr);
imaxp=itry(indx);

As discussed earlier in this thesis, the routines above resort to linear

interpolation to approximate values on an IV curve when they are not specifically

known through simulation data. The total error introduced by using this

approximation for all four junctions of the cell adds up quickly.

 87

LIST OF REFERENCES

[1] Solar Cells Webpage (http://www.solarbotics.net/starting/
200202_solar_cells/200202_solar_cells.html), last accessed 23 August
2006.

[2] Ultra Triple Junction (UTJ) Solar Cells Data Sheet, Spectrolab,
Incorporated, Sylmar, CA.

[3] Science Help Online Chemistry Lesson 3-6 Electron Configuration
(http://www.fordhamprep.org/gcurran/sho/sho/lessons/lesson36.htm),
accessed 21 Jul 2006.

[4] Silicon electron shell diagram
(http://commons.wikimedia.org/wiki/Image:Electron_shell_014_silicon.png)
, accessed 21 July 2006.

[5] Physics for Scientists and Engineers, Chapter 42 Quantum Physics Part
One
(http://www.kineticbooks.com/physics/trialpse/42_Quantum%20Part%20O
ne/toc.html), accessed 21 July 2006.

[6] Michael, S. , EC3230 Lecture Notes, Naval Postgraduate School, Winter
2004 (unpublished).

[7] Bates, A., Novel Optimization Techniques for Multijunction Solar Cell
Design Using Silvaco ATLASTM, Master’s Thesis, Naval Postgraduate
School, 2003.

[8] Man, K.F. , K.S. Tang, and S. Kwong, “Genetic Algorithms: Concepts and
Applications”,IEEE Transactions on Industrial Electronics, Vol. 43, No. 5,
pp. 519-534, 1996.

[9] Atlas User’s Manual. Software version 5.8.3.R, Silvaco International,
Sunnyvale, CA, September 2004.

[10] Michalopoulos, P., A Novel Approach for the Development and
Optimization of State-of-the-Art Photovoltaic Devices Using Silvaco,
Masters Thesis, Naval Postgraduate School, 2002.

[11] Green, M. , The Verification of Silvaco as a Solar Cell Simulation Tool and
the Design and Optimization of a Four-Junction Solar Cell, Master’s
Thesis, Naval Postgraduate School, 2002.

 88

[12] Crespin, A., A Novel Approach to Modeling the Effects of Radiation in
Gallium-Arsenide Solar Cells Using Silvaco’s ATLASTM Software, Master’s
Thesis, Naval Postgraduate School, 2004

[13] Therrien, C. W. and M. Tumamala, Probability for electrical and computer
engineers. Boca Raton, FL: CRC Press LLC, p. 18,299.

[14] Duncan, R., "A Survey of Parallel Computer Architectures,” IEEE
Computer. February 1990, pp. 5-16.

[15] Berkeley Open Infrastructure for Network Computing, University of
California, Berkeley, http://boinc.berkeley.edu, last accessed September
2006.

[16] Search for Extra Terrestrial Intelligence @ Home, University of California,
Berkeley, http://setiathome.berkeley.edu/, last accessed September 2006.

[17] Parallel Virtual Machine, Oak Ridge National Labs,
http://www.csm.ornl.gov/pvm/, last accessed July 2006.

[18] LAM/MPI Parallel Computing, http://www.lam-mpi.org/, last accessed July
2006.

[19] Mathworks, Inc, MATLABTM Distributed Computing Engine Pricing March,
North America Academic, March 2006

[20] Jain, R. The Art of Computer Systems Performance Analysis. New York:
John Weiley & Sons, 1991.

[21] Utsler, J. and S. Michael, “The Use of Genetic Algorithm for the Design
and Optimization of Advanced Multi-Junction Solar Cells”, presented at
the Midwest Symposium on Circuits and Systems, Cincinnati, August
2005

[22] Utsler, J. and S. Michael, “The Design of Advanced Multi-Junction Solar
Cells Using Genetic Algorithm for the Optimization of a Novel Cell Silvaco
Model”, presented at IEEE World Conference on Photovoltaic Energy
Conversion, Honolulu, May 2006

 89

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Representative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

7. Dr. Jeff B. Knorr, Chairman
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

8. Dr. Sherif Michael
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

9. Dr. Bret Michael
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

10. Dr. Todd Weatherford
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

